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Abstract. In this paper, we present a simplified parsimonious higher-order multivariate 

Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, 

estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments 

illustrate the effectiveness of TPHOMMCM-NCC. 

1 Introduction 

Markov chains is an important implement in many research areas, such as, internet applications [2]  

music [3], software testing[4], land cover change [5], energy consumption [6], speech recognition [7], 

physics, gene expression [9], finance [10-11], DNA[12] and so on. It is helpful to develop a better 

model for a more accurate prediction.by exploring the relationships of different categorical data 

sequences is meaningful to accurate prediction. 

Different methods for multiple categorical data sequences prediction (which means the 

relationships of different categorical data sequences are taken into account) has been proposed, e.g., 

the first-order multivariate Markov chain model, higher-order multivariate Markov chain model and 

an improved multivariate Markov chain model (to speed up the convergence) [10]. (They add a 

negative association part which is multiplied a constant for normalizing solutions at the back of the 

positive association part of the model. ). 

The organization of this article is organized as follows. In Section 2, we review some basic 

knowledge of Markov chain model. In Section 3, a simplified parsimonious higher-order multivariate 

Markov chain model with new convergence condition is proposed for multiple categorical data 

sequences. In Section 4, we estimate the parameters of the simplified parsimonious higher-order 

multivariate Markov chain model with new convergence condition. Numerical experiments show the 

effectiveness of our model in Section 5. 

2 A review on the Markov chains 

In this section, we briefly introduce several definitions and the first-order Markov chain model. 

2.1 The first-order Markov chain 

Several definitions of the Markov chain are first introduced [3]. 

Definition 1 Let the state set of the categorical data sequence with m  states be 

}21{Μ ,m,,  and ,Mk  }{1,2,k . If the sequence },,,{ 210 xxx  with m  states satisfies 

the following relationships: 
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the sequence is called as first-order discrete-time Markov chain. 

Definition 2 The conditional probability 

)|(Pr 11 tttt xxob                       (1) 

is called as the transition probability of the Markov chain. 

Definition 3 Rewriting the transition probability as 

M,),|(Pr 1,   kjkxjxobp ttkj      (2) 

then the transition probability matrix is 
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Definition 4 Suppose that 

,1 tt PXX   

then 
Tm

tttt xxxX ),,( 21  is the state probability distribution and 0X  the initial probability 

distribution. 

2.2 The simplified parsimonious higher-order multivariate Markov chain model  

In this part, a simplified parsimonious higher-order multivariate Markov chain model is introduced. 

For   },,,1{},,,2,1{,  nntskj   TPHOMMCM -NCC is 
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where ),,2,1(,, )(

1

)(

1

)(

0 skxxx k

n

kk   are the initial probability distributions, the normalization 

constant m1  keeps
Tj

ttt

j

t xxxX ),,( )(

1

)2(

1

)1(

11     as a probability vector.  (3) satisfies 

},,,1{},,,2,1{,,0,

,1

)(

,

)(

,

)1(

,

)1(

,

,1

)(

,

,1

)(

,

 nntskjh

kj

h

kj

kj

kj

kj

kj

n

kjh

h

kj

n

kjh

h

kj






















 

where 
)(

1

j

tx  is the state probability distribution at time t+1  in the kth sequence and 
),( kj

hP the hth step 

transition probability matrix from the states at time 1 ht in the kth sequence to the states at 

time 1t  in the jth sequence. 

Let ,))(,)(,)(( 1)()()(
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t IRxxxX the simplified parsimonious higher-order multivariate 

Markov chain model in matrix form has 



3

1234567890

ISAMSE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 231 (2017) 012011 doi:10.1088/1757-899X/231/1/012011






















































































































)(

)(

)(

),()2,()1,(

),2()2,2()1,2(

),1()2,1()1,1(

)(

)(

)(

),()2,()1,(

),2()2,2()1,2(

),1()2,1()1,1(

)(

1

)(

1

)(

1

1

1

1

1

1

j

t

j

t

j

t

ssss

s

s

j

t

j

t

j

t

ssss

s

s

j

t

j

t

j

t

X

X

X

BBB

BBB

BBB

m

X

X

X

BBB

BBB

BBB

X

X

X























(4) 

where if kj   
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and 

Here, the column sum of  BB ,  are not necessary equal to one. 

3 Convergence condition 

After t steps iteration of TPHOMMCM-NCC  
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4 Parameter estimation 

In this section, we will estimate the parameters of the simplified parsimonious higher-order 

multivariate Markov chain model. 

Let's first estimate the transition matrices ),( kj
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Normalizing the frequency transition matrices, probability transition matrix is  
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With the same process in [10], TPHOMMCM-NCC can be transformed into following form: 
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5 Application to sales demand prediction with simplified parsimonious higher-order 

multivariate Markov chain model 

In this part, the sales demand categorical data sequences are presented to show the effectiveness of the 

simplified parsimonious higher-order multivariate Markov chain model. 

We classifies the sales demand into six states (1,2,3,4,5,6), The customer's sales demand states in 

the same customer group of five important products of the company for a year is given in the 

Appendix [8]. 
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In Tables, denote that  the convergence factor of the convergence condition, n  is the order of the 

model, 1M   higher-order multivariate Markov chain model, 2M  parsimonious higher-order 

multivariate Markov chain model an 3M the simplified parsimonious higher-order multivariate Markov 

chain model. 

Table 1: Prediction errs  of M1, M2 and M3. 

 M1 M2 M3 

n pn pe pn pe pn pe 

1 13 314.67 25 259.35 13 257.49 

2 18 298.10 50 247.36 18 244.39 

3 23 297.98 75 246.31 23 244.99 

4 28 298.42 100 246.31 28 243.76 

5 33 302.22 125 246.31 33 243.40 

6 38 301.40 150 247.16 38 243.88 

7 43 301.97 175 246.91 43 243.87 

8 48 299.97 200 246.91 48 243.91 

 

From the results of Figure 1,2,3, we find that the simplified parsimonious higher-order multivariate 

Markov chain model preforms better than parsimonious higher-order multivariate Markov chain 

model and the higher-order multivariate Markov chain model in parameter number comparing, time 

consuming and the prediction precision. 

6 Conclusions 

We have investigated a simplified parsimonious higher-order multivariate Markov chain model and 

discussed its convergence condition. Numerical experiments show that the simplified parsimonious 

higher-order multivariate Markov chain model is efficient. Certainly, this model can be applied in 

credit risk, gene expression and other research areas. 
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