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Abstract. In this study, a special section tunnel model was established by using FDS (Fire Dy-

namics Simulator). The influences of lope and curvature on smoke flow under natural ventila-

tion have been studied. The results showed that under the condition of natural ventilation, the 

slope has some influences on the smoke flow in special section tunnel. The smoke spreading 

speed is accelerated along the upstream direction and decrease along the downstream direction 

due to buoyancy effect of slope. The steeper the tunnel, the more obvious the buoyancy effect. 

The curvature has little effect on the flow of flue gas. 

1. Introduce fds software 

The fire dynamics simulation software FDS is a kind of fire-driven by computational fluid dynamics 

(CFD) model. It is calculated by using the N-S equations, which are suitable for the calculation of 

low-velocity heat flow, especially in the event of fire. The core algorithm is establishing a clear pre-

dictor corrector system to ensure the accuracy in terms and space. 

LES (Large Eddy Simulation) is used in FDS to deal with the problem of turbulence. FDS software 

using Smokeview visualization programs to display the results of the fire dynamics simulation, and it 

has solved a large number of fire engineering problems. 

2.  Establishment of a model of special section tunnel 

2.1 Tables 

The Gongbei tunnel includes three parts, the open cut section of the sea area, the hidden section of the 

port and the open cut section of the land. The straight line, transition curve and circle curve form the 

W-type tunnel plane. The longitudinal section slope is U-type from 2.412% to 0.35%, and then to 

2.995%. The minimum curve radius of the road is 890m, the maximum longitudinal slope is 2.995%, 

and the minimum longitudinal slope is 0.35%. Plane graph of Gongbei tunnel is shown in Figure 1. 

Longitudinal section of Gongbei tunnel is shown in Figure 2 
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Figure 1. Plan graph of Gongbei tunnel 

 
Figure 2. Longitudinal section of Gongbei tunnel 

2.2 The Establishment of Calculation Model 

According to the actual size of Gongbei tunnel, a simulation model is established which is shown in 

Figure 3. The physical model is selected from the pile number YK1+467.696 to YK3+582 segment, 

and the total length is 2114.304m. 

 
Figure 3: The simulation model of Gongbei tunnel 

In addition, it is also an important step in the simulation process of FDS to divide the simulation 

computing area into the computational grid (Meshes), which directly affects the accuracy of the calcu-

lation results. The small size of the grid can improve the accuracy, but it will slow down the simula-

tion speed and increase the calculation time. The large grid size can improve the simulation speed, but 

it will reduce the accuracy of the simulation. Therefore, considering the factors such as model size, 

computer configuration and the accuracy of calculation results, the mesh size in numerical simulation 

is 0.5m * 0.5m * 1m.The computational mesh is shown in Figure 4. 

 
Figure 4: Computational mesh of Gongbei tunnel 

In the process of designing the fire scene, the fire source is located in the building on the premise 

of taking full account of the geometric characteristics of the building. To ensure the accuracy of the 

fire location, it is necessary to take into account the possible scale of fire, the spatial characteristics of 

each functional area within the building, the distribution of evacuation exit and smoke control 
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measures. In addition, the slope and curvature of the tunnel should be considered. Based on the above 

factors, 5 fire sources are located in the right line of the tunnel. 

The location of fire is shown in Table 1. Schematic diagram of fire source location is shown in 

Figure 5. 

Table 1.  The location of fire 

num-

ber 

The loca-

tion of fire 

Height dif-

ference 

Slope curva-

ture 

B HJD-35 11.083 -2.412% 1.22% 

E 
middle sec-

tion 

-1.566 
0.350% 0.96% 

F LJD-08 -1.874 0.350% 0.47% 

G LJD-21 -5.469 0.350% 1.39% 

H  LJD-35 -10.412 2.995% 1.13% 

 
Figure 5: Schematic diagram of fire source location 

In order to approach the actual situation, super- fast fire is selected, which fire growth rate is 

0.1875 kW/s2, the heat release rate is 50MW, and the combustion time is 516s. The plate size is 3m* 

m according to the grid precision and calculation model.  

3. Simulation result analysis 

3.1 Influence of slope on flue gas flow under natural ventilation 

Three different slope calculation conditions were selected and compared in order to study the influ-

ence of slope on the smoke flow. The slope is different but the curvature is similar. Other conditions 

on the effects of smoke flow are ignored. Selection of fire scene under natural ventilation is shown in 

Table 2. 

Table 2:  Selection of fire scene under natural ventilation 

number 

Heat re-

lease rate Slope 

Longitudinal 

wind velocity  

MW m/s 

B 50 -2.412% 0 

G 50 0.350% 0 

H 50 2.995% 0 

When the fire source is located at the slope of -2.412%, 0.350% and 2.995% of the tunnel, the nat-

ural ventilation conditions of the smoke spread as follows figure 6- figure 8. Sketch of smoke spread-

ing in scene B is shown in Figure 6. Sketch of smoke spreading in scene G is shown in Figure 7. 

Sketch of smoke spreading in scene H is shown in Figure 8. 
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（a）0s （b）200s 

  
（c）516s （d）750s 

Figure 6:  Sketch of smoke spreading in scene B. (a) 0s. (b) 200s. (c) 516s, the peak of heat release 

rate .(d) 750s, smoke spread length stability. 

  
（a）0s （b）200s 

  
（c）451s （d）516s 

Figure 7:  Sketch of smoke spreading in scene G. (a) 0s. (b) 200s. (c)451s, the smoke spread length 

exceeds the calculation model.(d) 516s, the peak of heat release rate . 

  

（a）0s （b）200s 

  
（c）516s （d）570s 

Figure 8:  Sketch of smoke spreading in scene H. (a) 0s. (b) 200s. (c) 516s, the peak of heat release 

rate .(d) 570s, smoke spread length stability 

As can be seen from Figure 6-Figure 8 that the smoke is rising in the form of an axis-symmetric 

plume. With the increase of time, the smoke reaches the ceiling, and then spreads under the ceiling. 

The length of flue gas reaches stable at 750s in scene B. The smoke spread length exceeds the cal-

culation model at 451s in scene G. The length of flue gas reaches stable at 570s in scene H. 

According to the simulation results of FDS software, the smoke level spread distance and velocity 

of each scene can be analyzed. The results are shown in Figure 9- figure 11. Left indicates the up-

stream direction of fire source and Right indicates the downstream direction of fire. 
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(a) 

 
(b) 

Figure 9:  Smoke spread distance and speed in scene B. (a) Smoke spread distance. (b) Smoke spread 

speed. 

As can be seen from Figure 9 that smoke spread length of upstream reached peak at 466s in scene 

B. According to the results, the reflux length was 168 m, and the spreading speed was 0.361m/s. 

However, the downstream smoke spread rate was 0.826 m/s. This is due to the slope is -2.412% of the 

scene. Downstream smoke spread faster than the upstream because the thermal buoyancy. When the 

heat release rate reaches peak value and is stable, the reflux length of the flue gas is shortened and 

spread to the outlet due to the chimney effect. 

 
(a) 
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(b) 

Figure 10:  Smoke spread distance and speed in scene G. (a) Smoke spread distance. (b) Smoke 

spread speed. 

 

As can be seen from Figure 10 that smoke spread length of upstream reached peak at 369s in scene 

G. According to the results, the reflux length was 296 m, and the spreading speed was 0.802m/s. How-

ever, smoke spread length of downstream reached peak 296m at 450s, and the downstream smoke 

spread rate was 0.658 m/s. 

 
(a) 

 
(b) 

Figure 11:  Smoke spread distance and speed in scene H. (a) Smoke spread distance. (b) Smoke 

spread speed. 

As can be seen from Figure 11 that smoke spread length of upstream reached peak 162m at 239s in 
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scene H. According to the results, the spreading speed was 0.677m/s. However, smoke spread length 

of downstream reached peak 133m at 361s, and the downstream smoke spread rate was 0.368 m/s. 

According to the results, under the condition of natural ventilation, the slope has some influences 

on the smoke flow in special section tunnel. Smoke spread along the tunnel sides are no longer sym-

metrical due to the existence of the slope. The smoke spreading speed is accelerated along the up-

stream direction and down along the downstream direction due to buoyancy effect of slope. The 

steeper the tunnel is, the more obvious the buoyancy effect is. 

3.2 Influence of curvature on flue gas flow under natural ventilation 

Three different slope calculation conditions were selected and compared in order to study the influ-

ence of curvature on the smoke flow. The curvature is different and the slope is similar. Other condi-

tions on the effects of smoke flow are ignored. Selection of fire scene under natural ventilation is 

shown in Table 3. 

 

Table 3:  Selection of fire scene under natural ventilation 

number 

Heat re-

lease rate curvature 

Longitudinal 

wind velocity 

MW  （m/s） 

E 50 0.96% 0 

F 50 0.47% 0 

G 50 1.39% 0 

When the fire source is located at the curvature of -0.96%, 0.47% and 1.39% of the tunnel, the 

natural ventilation conditions of the smoke spread as follows figure 12- figure 14. Sketch of smoke 

spreading in scene E is shown in Figure 12. Sketch of smoke spreading in scene F is shown in Figure 

13. Sketch of smoke spreading in scene G is shown in Figure 14. 

  
（a）0s （b）200s 

  
（c）300s （d）516s 

Figure 12:  Sketch of smoke spreading in scene E. (a) 0s. (b) 200s. (c) 300s. (d)516s, the peak of heat 

release rate . 

  
（a）0s （b）200s 

  
（c）300s （d）401s 

Figure 13:  Sketch of smoke spreading in scene F. (a) 0s. (b) 200s. (c) 300s. (d) 401s, the smoke 

spread length exceeds the calculation model. 
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（a）0s （b）200s 

  
（c）451s （d）516s 

Figure 14:  Sketch of smoke spreading in scene G. (a) 0s. (b) 200s. (c) 451s, the smoke spread length 

exceeds the calculation model . (d) 561s, the peak of heat release rate . 

As can be seen from Figure 12-Figure 14 that the smoke is rising in the form of an axis-symmetric 

plume. With the increase of time, the smoke reaches the ceiling, and then spreads under the ceiling. 

The smoke spread length exceeds the calculation model at 401s in scene F. The smoke spread 

length exceeds the calculation model at 451s in scene G 

According to the simulation results of FDS software, the smoke level spread distance and velocity 

of each scene can be analyzed. The results are shown in Figure 15- figure 17. Left indicates the up-

stream direction of fire source and Right indicates the downstream direction of fire. 

 
(a) 

 
(b) 

Figure 15:  Smoke spread distance and speed in scene E. (a) Smoke spread distance. (b) Smoke 

spread speed. 

As can be seen from Figure 15 that smoke spread length of upstream reached peak at 387s in scene 

E. According to the results, the reflux length was 279 m, and the spreading speed was 0.721m/s. How-

ever, smoke spread length of downstream reached peak 285m at 428s, and the downstream smoke 
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spread rate was 0.666 m/s. 

 
(a) 

 
(b) 

Figure 16:  Smoke spread distance and speed in scene F. (a) Smoke spread distance. (b) Smoke 

spread speed. 

As can be seen from Figure 16 that smoke spread length of upstream reached peak at 343s in scene 

F. According to the results, the reflux length was 251 m, and the spreading speed was 0.732m/s. How-

ever, smoke spread length of downstream reached peak 271m at 401s, and the downstream smoke 

spread rate was 0.676 m/s. 

 
(a) 
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(b) 

Figure 17:  Smoke spread distance and speed in scene G. (a) Smoke spread distance. (b) Smoke 

spread speed. 

As can be seen from Figure 17 that smoke spread length of upstream reached peak at 369s in scene 

G. According to the results, the reflux length was 296 m, and the spreading speed was 0.802m/s. How-

ever, smoke spread length of downstream reached peak 296m at 450s, and the downstream smoke 

spread rate was 0.658 m/s. 

Comparing with the spread rate of flue gas under different curvature, it can be seen that, the curva-

ture has little effect on the flow of flue gas. However, the spreading speed of upstream flue gas does 

not meet this law in scene G. That is because the scene G position is closer to the entrance than the E 

scene and F scene. The entrance slope is greater than the scene E, F, G. Due to the strong "chimney ef-

fect" makes the upstream smoke of scene G spread faster than the scene E and scene F. 

4. Conclusions 

In this study, a special section tunnel was established by using FDS (Fire Dynamics Simulator). The 

influences of lope and curvature on smoke flow under natural ventilation have been studied. The re-

sults showed that: 

(1) Under the condition of natural ventilation, the slope has some influences on the smoke flow in 

special section tunnel. Smoke spread along the tunnel sides are no longer symmetrical due to the ex-

istence of the slope. The smoke spreading speed is accelerated along the upstream direction and down 

along the downstream direction due to buoyancy effect of slope. The steeper the tunnel is, the more 

obvious the buoyancy effect is. 

(2) Comparing with the spread rate of flue gas under different curvature, it can be seen that, the 

curvature has little effect on the flow of flue gas. 
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