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Abstract. The durability of the mechanical contact is often plagued by surface-related 

phenomena like rolling contact fatigue, wear or crack propagation, which are linked to the 

important gradients of stress arising in the contacting bodies due to interaction at the asperity 

level. The semi-analytical computational approach adopted in this paper is based on a 

previously reported algorithm capable of simulating the contact between bodies with arbitrary 

limiting surfaces and viscoelastic behaviour, which is enhanced and adapted for the contact of 

real surfaces with microtopography. As steep slopes at the asperity level inevitably lead to 

localized plastic deformation at the tip of the asperities that are first brought into contact, the 

viscoelastic behaviour is amended by limiting the maximum value of the pressure on the 

contact area to that of the material hardness, according to the Tabor equation. In this manner, 

plasticity is considered in a simplified manner that assures the knowledge of the contact area 

and of the pressure distribution without estimation of the residual state. The main advantage of 

this approach is the preservation of the algorithmic complexity, allowing the simulation of very 

fine meshes capable of capturing particular features of the investigated contacting surface. The 

newly advanced model is expected to predict the contact specifics of rough surfaces as 

resulting from various manufacturing processes, thus assisting the design of durable machine 

elements using elastomers or rubbers. 

1.  Introduction 

The assessment of the contact area, contact tractions and surface deformation arising in the mechanical 

contact of solids bounded by rough surfaces is a fundamental problem in Contact Mechanics, whose 

importance stems from the fact that various modes of wear (surface-initiated rolling contact fatigue, 

fatigue wear or sliding wear) are driven by microtopography-induced stress perturbations. When two 

machine elements are brought into contact and load is transmitted, interfacial tractions occur due to 

direct interaction of the two surfaces at the asperity level, generating a discrete contact area defined as 

the set of individual contact spots. The knowledge of this contact area and of the associated gap 

between the contacting surfaces may be crucial in assessing the thermal or electrical conductivity of 

the contact, as well as its sealing capacity. At this moment, the only approach that can account for 

microcontact interaction is the direct numerical resolution of the contact problem with real specimens 

of roughness as measured with 3D surface imaging devices, or with computer generated surfaces. 

ModTECH                                                                                                                                            IOP Publishing
IOP Conf. Series: Materials Science and Engineering 227 (2017) 012120    doi:10.1088/1757-899X/227/1/012120

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

Various domains of the engineering use composite materials that are based on viscoelastic matrix. 

The structural complexity of these materials prohibits the development of mathematical models that 

are solvable within the framework of contact mechanics. Most of the existing solutions are limited to 

specific contact geometries and ideal models of viscoelastic behavior with only one relaxation time. 

The solution of the Hertz contact problem was firstly obtained by Lee and Radok [1] for linear 

viscoelastic materials, under the assumption of a monotonically increasing contact area. This 

assumption was later released by Ting [2,3], who advanced an implicit solution for the contact of 

axisymmetric bodies generating a contact area described by an arbitrary function of time.  

The semi-analytical treatment of the viscoelastic contact problem was pioneered by the work of 

Chen et al. [4]. The main advantage of the semi-analytical approach consists in the release of the 

assumptions concerning the contact geometry, the loading history or the constitutive law of the 

viscoelastic material. A previously proposed algorithm [5] for the linear viscoelastic contact of bodies 

of arbitrary boundaries is enhanced and adapted to simulate the contact of rough surfaces with steep 

asperities acting as pressure concentrators. 

2.  Assumptions and limitations 

The assumptions needed for the solution of the rough contact problem involving linear viscoelastic 

materials fall into two categories: (1) the contact model assumptions, (2) and the ones related to the 

mechanical response of the viscoelastic material, i.e. the constitutive law. 

The contact model employed in this paper features the classical assumptions [6] needed to solve the 

contact problem in an iterative manner. The half-space approximation is employed in computation of 

surface displacement, empowering the use of the Boussinesq fundamental solution for a point force 

acting normally on the boundary of an elastic half-space. Consequently, bodies of arbitrary surface 

profiles are assumed as semi-infinite linear elastic solids bounded by a plane surface, which is 

reasonable in case of infinitesimal strains arising in concentrated contacts, when the contact area is 

small compared to the dimensions of the contacting bodies. Friction is neglected for brevity, meaning 

the contact interface cannot sustain shear tractions. As shown in [7], while there is no conceptual 

difficulty in incorporation of friction in a slip-stick contact model, the additional iterative loop needed 

to stabilize the mutually dependent contact problems in the normal and in the tangential direction is 

very computationally intensive. Moreover, the normal contact tractions are assumed to be compressive 

only. In the framework proposed in this paper, the contact solution is achieved using an optimization 

scheme which requires the non-negativity of contact tractions. The contact process was modeled as a 

variational problem by these authors [8], in which the desired pressure distribution achieves the 

minimum of a quadratic form, i.e. the complementary energy, subjected to constraints, i.e. the 

boundary conditions. The convergence of this quadratic optimization is guaranteed for compressive 

tractions (pressure) only. It should be noted that adhesion was not accounted for either in the classic or 

the modern literature [1-4] of the viscoelastic contact. The viscoelastic solution advanced in [2] 

employs a displacement field matching closely the indenter profile within the boundaries of the 

contact area, but does not guarantee that contact tractions are everywhere compressive. As shown in 

[9], the incorporation of adhesion in a contact model leads to equations that are highly nonlinear and 

may have multiple singularities, requiring the use of special numerical techniques such as the Particle 

Swarm Optimization method. 

On the other hand, simplifying assumptions are needed for the constitutive law of the viscoelastic 

material as well.  Computational contact mechanics can incorporate the theory of viscoelastic behavior 

provided a directly additive (i.e., linear) viscoelastic response is assumed, which is reasonable in the 

framework of infinitesimal strains. This assumption of linearity provides the basis for the 

mathematical modeling of viscoelasticity, allowing for the computation of responses to arbitrary 

sequences of stress or strain within the Boltzmann superposition theory. In this framework, the 

viscoelastic material response to various sequences of stress or strain can be assessed according to the 

Boltzmann hereditary integral, by employing two interchangeable functions of time, namely the 

relaxation modulus ( )t  and the creep compliance ( )t . The creep compliance function describes 

ModTECH                                                                                                                                            IOP Publishing
IOP Conf. Series: Materials Science and Engineering 227 (2017) 012120    doi:10.1088/1757-899X/227/1/012120

2



 

 

 

 

 

 

the viscoelastic strain response to a unit step change in stress, and the relaxation modulus, conversely, 

the stress response to a unit step change in strain.  

As opposed to nominal (or theoretical) contact shapes, the contact of real surfaces occurs at discrete 

spots due to inherent surface roughness. As the initial contacting asperities tips become flattened, 

lower asperities come into contact, leading to an increasing contact area that can sustain the applied 

load. It is reasonable to assume that even at low loading levels, plastic deformation may occur at the 

asperities tips, especially when the slope of the single asperity is high. In the discrete numerical model, 

this slope may be exaggerated by a coarse mesh, in which only one grid is available for the asperity 

tip.  

Many research efforts were dedicated to the integration of plasticity in the contact model. The first 

complete formulation of an elastic-plastic contact model and its associated computer code, featuring 

three nested iterative levels, was reported by these authors [10]. Subsequent iterations of the latter 

improved on the convergence of the inner residual loop, while extending the generality of the 

plasticity hardening law. Essentially, the elastic-plastic contact problem is divided into an elastic and a 

residual subproblem, which are mutually dependent. The elastic subproblem bare resemblances with 

contact solver employed in this paper, while the residual part is based on a universal algorithm [11] for 

integration of elastoplasticity equations and on the numerical solution of the inclusion problem [12]. 

Both viscoelastic and elastic-plastic contact problems are history dependent and therefore require path 

discretization. Extension of the elastic-plastic strategy to viscoplastic materials is tantalizing, an 

important step being made by these authors [13], who extended the solution of the inclusion problem 

to viscoelastic materials, by applying the Eshelby’s formalism [14] to an ellipsoidal inhomogeneity 

located in a viscoelastic matrix. Based on the solution of the inclusion problem with an elastic matrix 

[15], the computation of the residual part in viscoplastic materials is expected to have a great impact 

on the algorithmic complexity, due to extension of the surface discretization inside the viscoplastic 

material. Therefore, the development of a fully-fledged contact model incorporating both viscoelasticy 

and plasticity is beyond the scope of this paper. 

In the contact model employed in this paper, plasticity is accounted for in a simplified manner that 

preserves the spatial discretization requirements to two dimensions. It should be noted that a similar 

assumption, that of imposing a cut-off value to contact pressure, has been employed in many works on 

the elastic-plastic contact of rough surfaces, as discussed in the next section. 

3.  Contact model and algorithm overview 

The contact model employed in this paper is an extended version of a previous work by the same 

authors [5]. It features a 2D spatial discretization, allowing for iteration of contact area and of pressure 

distribution, as well as a temporal discretization, required for reproduction of the memory effect 

specific to viscoelastic materials. Consequently, the model parameters are functions of at most three 

arguments, the first two being reserved for spatial and the third one for temporal localization. The 

problem model is repeated for clarity, and new constraints are added: 

 
( , ) ( )

( ) ( , , ), 1 t

i j A k

W k p i j k k N


    ; (1) 

 ( , , ) ( , ) ( , , ) ( ), ( , ) , 1 th i j k hi i j u i j k k i j P k N      ; (2) 

 ( , , ) 0 and ( , , ) 0, ( , ) , 1 tp i j k h i j k i j P k N     ; (3) 

 ( , , ) 0 and ( , , ) 0, ( , ) , 1 tp i j k h i j k i j P A k N      ; (4) 

  
1 2

2 1 1

( , , ) ( , , ) ( , , ) ( , , 1) ,  ( , ) , 2 ;
tN N N

t

n m

u i j k K i j m k n p m n p m n i j P k N
  

          (5) 
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 ( , , ) , ( , ) , 1 tp i j k H i j P k N    . (6) 

Here, W  denotes the applied normal force, A the set of elementary cells best fitting the shape of 

the contact area, P  the computational domain, p  the contact pressure, hi  the gap between the 

undeformed surfaces at time 0t  , 1N  and 2N  the number of grids in the spatial discretization, tN  the 

number of temporal steps, h  the gap between the deformed surfaces, u  the relative normal 

displacement,   the rigid-body approach, H the hardness of the softer material, and 

( , , )K i j m k n    the viscoelastic influence coefficient, expressing the displacement induced in the 

( , )i j  patch of the spatial mesh after k  time steps, by a unity uniform pressure that acted in the patch 

( , )m  after n  time steps, with n k . 

A robust algorithm for the contact model consisting in the set of equations (1) - (5) was previously 

advanced by these authors [5]. When applied to rough contact problems with steep slopes on the 

contact area, the latter model, while conceptually sound, predicts highly isolated pressure peaks related 

to the tips of the asperities that first come into contact. It is highly unlikely that the entire load can be 

sustained by a few asperities only. In reality, these higher asperities will deform plastically and 

become flattened, bringing additional lower asperities into contact, resulting in an enlarged contact 

area that can accommodate the applied load. It is in this later stage of the contact process that a purely 

viscoelastic response can be assumed for the contacting materials.  

Consequently, in order to apply the contact model (1) - (5) to viscoelastic rough surfaces, the 

matter of unrealistic pressure peaks has to be addressed. In dealing with this inadequacy, many authors 

[16, 17] have employed the Tabor equation [18] in the study of the elastic-plastic contact of rough 

surfaces. This equation basically establishes the relation between the local normal strength mp , the 

local shear strength m  and the hardness H  of the softer material in the form: 

 2 2 2

m mp H  , (7) 

where   is the Tabor constant, generally determined from experimental measurements. For elastic – 

perfectly-plastic materials, H≈2.8σY, where Y  is the uniaxial yield strength. As in our model the 

contact interface cannot sustain shear tractions, 0m  , and consequently the hardness of the softer 

material can be used as a cut-off value for the local pressure, as resulting from equation (7). 

Consequently, the model for the contact of linear viscoelastic materials bounded by rough surfaces is 

completed with the equation (6), which adds supplementary boundary conditions to the initial model. 

The algorithm previously proposed for the contact model (1) - (5) can be adapted to account for the 

supplementary constraint (6) imposed to the contact pressure. The required modifications are 

discussed here.  

The algorithm aims to solve the linear system of equations resulted from equation (2), having the 

nodal pressures as unknowns. This is accomplished by employing the Conjugate Gradient Method 

(CGM), due to its superlinear rate of convergence. However, in the initial formulation [5] for the set 

(1) - (5), only cells with positive pressures were considered in the computation of the parameters 

required by the CGM: the residual, the descent direction, the length of the step to be made along the 

descent direction. In other words, not every combination of the indices ( , )i j  from relation (2) 

generates equations that are useful to compute the pressure distribution. By adding or substracting 

equations from the linear system, based on the complementarity conditions (3) and (4), the contact 

area itself is adjusted with each new iteration.  

The negativity of a nodal pressure was used in the original algorithm as a criterion for excluding 

the corresponding cell from the contact area and the corresponding equation from the linear system. 

Once extracted from the contact area, the cell is assigned a vanishing nodal pressure. In the same 

manner, equations of the form (2) corresponding to cells ( , )i j  with pressures that exceed the material 

hardness are excluded from the system resolution process (i.e. from the computation of the residual, of 

ModTECH                                                                                                                                            IOP Publishing
IOP Conf. Series: Materials Science and Engineering 227 (2017) 012120    doi:10.1088/1757-899X/227/1/012120

4



 

 

 

 

 

 

the descent direction and of the descent step). To these cells, a pressure equal to the material hardness 

is assigned. 

The performed numerical simulations suggest that the algorithm speed of convergence is not 

affected by the modifications required to accommodate the supplementary boundary condition (6). 

This simplified manner of imposing a plasticity related correction to the viscoelastic model, while not 

being able to predict the residual state resulting from the plastic flow process, allows for the 

computation of the pressure distribution and of the contact area with only a two-dimensional spatial 

mesh. In this manner, the computational resources can be used for the accurate capturing of rough 

surface specific features by using finer meshes. It should be noted that, whereas the simulation of an 

elastic-plastic contact process is usually performed on a grid with 
264  points on the contact area, the 

roughness sample used in this paper has 
2512  individual heights.  

4.  Numerical simulations and results 

To better clarify the effect of the additional constraints imposed on the pressure distribution, a single 

asperity spherical contact was simulated in the elastic domain. The Hertz contact parameters, namely 

the central maximum pressure Hp  and the contact radius Ha , were used as normalizers in figure 1, 

depicting the pressure profiles in a radial plane. The normal load was chosen so that the maximum 

pressure exceeds the hardness of the material. In the purely elastic simulation (i.e. without the 

additional constraint (6)), the pressure is semi-ellipsoidal, in accord with the Hertz solution. When the 

limiting of the pressure is imposed, the numerically predicted contact area keeps its circular aspect, but 

a central circular plateau appears at the level of the cut-off limit imposed for the contact pressure. In 

order to compensate for the conventional limiting of pressure and to sustain the applied load, the 

contact radius increases, as resulting from figure 1.  

In a fully-fledged elastic-plastic contact code, with full computation of the residual state, the 

increase of the contact area with the development of plastic strains inside the elastic material is the 

result of modification in contact conformity due to residual displacement. The grid that can be solved 

with the elastic-plastic code [10] is considerably coarser than the one used in this paper, as the spatial 

discretization needs to be extended in the third dimension (in depth) to assess the plastic strains 

developed in the softer material. The simplified manner in which plasticity is accounted for in the 

model proposed herein promises [16,17] accurate estimation of contact area and of pressure 

distribution while preserving the computational complexity of the contact solver to that of a purely 

elastic contact scenario. 
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Figure 1. Radial pressure profiles in the 

spherical contact. 

 Figure 2. Deterministic roughness 

sample. 
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The simulation of the rough viscoelastic contact is performed using a deterministic (i.e. obtained by 

actual measuring of a real specimen) roughness sample, consisting in the discrete heights of 512 512  

equidistant points laying in a rectangular patch of side lengths 0.1 0.1 mm, as shown in figure 2. The 

points with the lower heights touch the counter surface (a rigid flat) first. 

Two contact simulation are firstly performed without considering the effect of viscoelasticity (i.e. 

at time 0t  s, under the assumption that the body was previously undisturbed), aiming to better 

clarify the effect of pressure limitation in a rough contact problem involving real microtopography. 

The contact model without the additional pressure constraint (6) predicts highly isolated pressure 

peaks related to the asperity tips with steep slopes, as shown in figure 3. Such levels of contact 

tractions, one order of magnitude greater than the hardness of the material, cannot be sustained 

without severe plastic deformation. The limiting of pressure, as depicted in figure 4, helps alleviate 

these spurious pressure concentrators and results in additional contact spots related to lower asperities, 

thus leading to a presumably more realistic prediction of the contact area. For comparison purposes, 

the same pressure scale of was used in both figures 3 and 4. It should also be noted that the contact 

area in figure 4 is roughly 3.2 times the one predicted from the purely elastic computation in figure 3. 

 

 

 

 

Figure 3. Pressure distribution in rough 

contact, purely elastic analysis. Maximum 

nodal pressure max 6.45 GPap  . 

 Figure 4. Pressure distribution with 

consideration of plasticity. Maximum nodal 

pressure max 300 MPap H  . 

 

The considered constitutive law for the viscoelastic material is that of the polymethyl methacrylate 

(PMMA), a thermoplastic polymer whose mechanical properties were studied extensively by Kumar 

and Narasimhan [19]. The relaxation modulus of PMMA was measured experimentally up to 1000 s 

under uniaxial compression. Whereas classical rheological models like the Maxwell or the Kelvin 

units, having only one relaxation time, are adequate for qualitative description of the viscoelastic 

behavior, the naturally occurring spectrum of relaxation times of a viscoelastic material can be 

modeled by a Prony series (corresponding to a Weichert model), by including as many exponential 

terms as required. The Weichert model consists in several Maxwell units and a free spring, all 

connected in parallel, having the relaxation modulus: 

 0

1

( ) exp
n

i

i i

t
t g g



 
   

 
 , (8) 

where 0g  is the spring stiffness of the free spring, and i  and ig  the relaxation time and the spring 

stiffness of each Maxwell unit. 
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A two-term Prony series (i.e. with two relaxation times) was fitted [4] to the experimental data of 

the PMMA, leading to the following relaxation curve: 

 ( ) 1429.71 184.62exp 191.06exp , (MPa).
8.93 117.96

t t
t

    
     

   
 (9) 

The hardness of the PMMA was considered as indicated in [19], 300 MPaH  . A step loading 

with 0.5 NW   was simulated in a time interval of 1000 s, divided into 200 equal time increments. 

The contact area maps in the beginning and at the end of the simulation window are presented in 

figures 5 and 6. Comparison of the two plots shows that the contact area, defined as the sum of all 

discrete contact spots, grows with time. Additional asperities that were brought into contact at the end 

of the simulation window due to viscoelasticity effects, are indicated in figure 6 using dashed lines. 

 

 

 

 

Figure 5. Contact area map at 0 st  .  Figure 6. Contact area map at 1000 st  . 

 

The evolution of the contact area with time is presented in figure 7. In the beginning of the 

simulation window, the creep effect of the viscoelastic material flattens the contacting asperities, 

bringing lower asperities into contact. As time goes on, the creep process stabilizes due to delayed 

elasticity and the contact area grows with time more slowly.  
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Figure 7. Evolution of the contact area with time. 
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5.  Conclusions 

This paper advances the generalization of a previously reported contact code for simulation of contact 

processes involving viscoelastic bodies of arbitrary surface profile. The generalization consists in 

imposing additional constraints to the nodal pressure computed exclusively from the geometrical 

condition of deformation.  

It was found that direct application of the algorithm for arbitrary contact geometry, while sound in 

case of smooth limiting surfaces, leads to highly concentrated pressure peaks when inputting 

deterministic rough surfaces. While the assumption of a viscoelastic deformation is clearly too 

conservative for the asperity tips that enter the contact first, the incorporation of plasticity in the 

viscoelastic contact model lacks mathematical support. Moreover, based on the similitude with the 

elastic-plastic contact problem, computation of the residual state, requiring the solution of the 

inclusion problem, is likely to have a huge impact on the algorithm computational efficiency. A 

reasonable compromise is achieved in this paper, by imposing a material dependent threshold for the 

contact pressure. With this assumption, the contact pressure is computed by a purely geometrical 

analysis of the surface of deformation. A similar technique was successfully used by other authors in 

the study of the elastic-plastic rough contact. 

The viscoelastic contact simulation employs a deterministic roughness sample with 512 512  

equidistant points measured in a rectangular area of side lengths 0.1 0.1 mm, and a viscoelastic 

constitutive law with a relaxation modulus described by a two-terms Prony series, fitted from 

experimental data for a polymethyl methacrylate specimen in uniaxial compression. The more 

pronounced contact area growth in the early stages of the contact simulation can be attributed to the 

viscoelastic creep, and the subsequent stabilization to delayed elasticity. 
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