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Abstract. The paper presents an initial study concerning the form factors for shear, for a
rectangular and for a circular cross section, being used an analytical method and a numerical
study. The numerical study considers a division of the cross section in small areas and uses the
power of the definitions in order to compute the according integrals. The accurate values of the
form factors are increasing the accuracy of the displacements computed by the use of the strain
energy methods. The knowledge resulted from this study will be used for several directions of
development: calculus of the form factors for a ring-type cross section of variable ratio of the
inner and outer diameters, calculus of the geometrical characteristics of an inclined circular
segment and, using a Bool algebra that operates with geometrical shapes, for an inclined
circular ring segment. These shapes may be used to analytically define the geometrical model
of a complex composite section, i.e. a ship hull cross section. The according calculus relations
are also useful for the development of customized design commands in CAD commercial
applications. The paper is a result of the long run development of original computer based
instruments in engineering of the authors.

1. Introduction

Several types of models may be developed when a phenomenon is being studied. Analytical models
are using the classic knowledge in the field which is based on simplifying hypotheses. These
assumptions were useful in order to minimise the amount of calculi by accepting a certain inaccuracy.
Nowadays calculus instrument is the computer and it offers speed and accuracy when a certain volume
of calculi must be performed. Moreover, it may be used for the integration of the various studies
offering an overview regarding the phenomenon under investigation [1]. Regarding the analytical
models, the computer may be used to disregard the classic hypotheses, for instance the small
displacements assumption, by the use of the numerical integration [2]. In order to use the opportunities
offered by the nowadays information technology development, the classic problems must be
reformulated starting from the idea that the computer and the computer programming are the main
calculus instruments. This approach includes the mathematical background of the problems which
must be considered from a new perspective [3].
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2. Analytical context and problem formulation

Calculus of the displacements of a given structure may be done using several approaches, for instance
the method of initial parameters or using strain energy methods. In what follows, we consider the
strain energy methods. An initial way to express the strain energy takes into account the stresses:

U =

&
v e v
where E is Young’s modulus and G is the shear modulus or the modulus of rigidity.

. : : . N .
For simple axial loads the normal stress may be computed using the relation o™ = % where A is

the area of the cross section and the according strain energy is
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For pure bending with M, or M,, the according normal stresses are o :I—Y~Z,
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z=——=%.y where |, and |, are the second moments of area. The according strain energy
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For the T, and T, shear forces, the shear stresses may be computed using Juravschi’s relations

T, (S T, (S
™) = I—Y : (b—zj, ) = I—Z : (EYJ , where S, , S, are first moments of area and b, , b, are widths
A A Y

of the cross section in the current point where the shear stresses are computed. The according strain

energy relations are
k.
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are designated form factors for shear.

where

. ) . M
The M, twisting moment is generating the shear stress M) = X

p 1s the polar
moment of area and the according strain energy is

) _ff M
U J'(ZG de (6)

Using the principle of superposition, the energy produced by all internal forces and moments along
an interval of L; length is

UZI[N—fJ-dX+I[—kYi -TYZiJ-dx+I[—kZi -Tzzi]-dx+
L2 B A (2:G- A 1\ 2:G-A
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+I{LJ-dX+I(L}-dX+I(LJ-dX. (7)
L 2:G;- 1y, L 2-F-ly; L 2-B- 1z,

For a structure consisting of ‘N ’ intervals for which the geometrical characteristics and the
material constants are identical for each interval while the internal forces and moments may have a
certain variation along the interval, the strain energy is [4]:

U_IZN; >E A [J' f(x)-dx] +

+ZNZ 5 G A [ITYl dx} +Z > G A ITZ,()dx} +

i=1 i=1

L.

ﬂzil ﬁ[J‘Mil(x)dxj +

Sty [ et s -

If we place a unit dummy load along the &, unknown displacement, and we remove the real loads,
it results the functions of the internal forces and moments n(x), t, (X), t, (X), my (X), m, (X) and

m, (X) on the same interval, ‘1 °, as the real internal forces and moments.
By applying the Reciprocal Work Theorem or Betti’s Theorem, it results the expression of the

unknown displacement
) 0 o

5K:i:{(5.1A)i'L_( o dx}rz{( :
[( d}z{ I Xi<x>-mm<x>)-dx}
z{ﬁj(m( )dx}z[ el z.<x>-m2i<x>>~dX]. o

In most of the ‘classic’ approaches the students are disregarding the effects of the internal forces.
However, using the actual computing instruments and considering the accuracy of the results an
important goal of the computer based analytical models, we must take into account the terms where

the shear force appears in the previous relation, i.e. the K, and K, form factors for shear.

3. Discussion
The form factors may be computed analytically for simple shape cross sections. So far we haven’t
found proofs of the form factors for shear, the according values for simple shapes being taken from
one book to another [5].

For complex composite shapes there may be conceived numerical approaches, in this case being
necessary a new formulation of the problem.
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3.1. Analytical approach for a rectangular section

Let us consider the calculus scheme presented in the following figure. As it may be noticed, we use the
symmetry of the domain with respect to the vertical axis. Let us consider a point located at distance z
in respect to the horizontal axis. Between the current point and the bottom most boundary of the

section is the subdomain for which we consider the first moment of area.

b A

Figure 1. Calculus scheme for a rectangular section.

The first moment of area is:

%/—/
Distance from the centroid
of the hatched area
to the Y centroid axis

It results the law of variation:

b (h? b-h? 72
S Z)=—- ——22 = . 1_4._ .
@) 2[4 j 8 ( hzj

4 23?2 2 4
kz=i45‘h—'.[ 1_4.2_2 dAzg-i-J. 1_8.Z_2+16.Z_4 dA,
b-h> 64 h 4 b-h 5 h h

(10)
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It results k, :g and in a similar way one can prove that K, :g. It results the form
coefficients for a rectangular shape:

6 6
kY :g,kz :g. (11)

3.2. Analytical approach for a circular section
Let us consider the circular cross section in the figure below. We consider a horizontal line at

distance Z >0 and, from this line, an infinite small distance, 0Z , which defines an infinite small area,
dA, of a curvilinear rectangular region.

Y
0
\ 2 g
BN
dA/““/W_é 7 ez
E

A

Y z Figure 2. Calculus scheme for a circular section.

The area of the circular sector for a 2-6 central angle is a ratio of the area of the entire circle,
7-R?, corresponding to a 2- 77 central angle. It results

2
AOBED:2'0'7Z R =0-R*. (12)
2.1
The area of the OBD triangle is OCéBD = oc (2 BC) =0C-BC.

The OC and BC segments may be expressed with respect to the R radius and the € angle in the
BOC right angled triangle:
OC =R-cos(d). (13)
BC =R-sin(#). (14)
This means
. . 1 . 1 .
Agsp = R-c0s(0)- R-sin(@) = R?-sin(6)-cos(@) = = -R?-[2-sin(#)-cos(@)] = = - R? -sin(2-6).
oc BC 2 2
The area of the circular segment may be computed by subtracting the area of the OBD triangle
from the area of the circular sector, i.e. Agepe = Aogep — Aogp - It Tesults
2

Agcoe =0-R’? —%. R’ .sin(2-9)=R?-[z-e—sin(z-e)], ie.
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Ao =R7-[2-9—sin(2-9)]. (15)

The next stage is to evaluate the first moment of area.
The dA infinite small area may be expressed as the area of a curvilinear rectangle, i.e.
dA=BD-dz . (16)
Z coordinate may be also expressed with respect to radius R and angle @ in the right angled
triangle BOC :

z=R-cos(d). (17)
The according derivative is:
dz=-R-sin(#)-do. (18)
The expression of the infinite small area, dA , becomes
dA=[BD-dz|=2-R-sin(6)-[Rsin(¢)-do]=2-R*-sin?*(¢)-do. (19)
BD dz

The first moment of area is calculated as an integral for the infinite small area, dA:

z):.[z-dAsz-cos(Q)-[Z‘R2 -sin2(9)~dHJ:2- R® ‘Tsinz(e)-cos(e)‘de.

z dA

SY(z):2~R3~:0[sin2(¢9)-cos(9) do=2-R®. Ism )-[sin(0)] -d9:2-R3'{%@} .

0

It results the expression:
2 .
SY(z)zg-R3-sm3(9). (20)
The position of the centroid with respect to the centre of the circle is:

;- R®-sin®(@)

.3
o= gR#ﬁ;e) ey
—.[2-6-sin(2-0)]
2
The second moment of area of the circular section is:
4 4
|Y=7z'Cl _m2R) 167 pu 7 pe (22).
64 64 64 4
The width of the section is
b, =BD =2-R-sin(9). (23)

In this case, the form factor is
2

2 -sin (6?)
A S R?
k ZFJ(EYJ da=r I 2-R-sin(@ 9A,
4

16 1 1 ge gno(o)| aaz 26 L.
k, =— — % AL; R?-sin (0)} dA Y Asm “(9)-dA.

According to (19), dA=2-R?-sin?(#)-d@, it results

I\J
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16 1 © . 32 ..
K, S _([sm )-[—2-R2-smz(e)]-de:—E-Isme(e)-de. (24)

We consider the following product-to-sum identities:
2-sin(a)-sin(¢p) = cos(ar — @) —cos(a + ) =

sin(a)-sin(p) = % [cos( — ¢)—cos(a + ¢)]. (25)
2-cos(a)-sin(p) = sin(a +¢)-sin(a —p) =
cos(a)-sin(p)= % [sin(a + @) —sin(a —¢)]. (26)

We evaluate sin®(8):

sin*(6)=sin(9)-sin?(8) =sin(g) 1=¢252:0) _ L ¢

> =5 sin(9)—cos(2-6)-sin(9)].  (27)
In the (26) identity we replace @ — 2-6, @ — 6 and it results
cos(2-0)-sin(0):%'[sin(2'0+9)—sin(2'0—0)]:%'[sin(&@)—sin(@)]. (28)

By replacing (28) in (27), it results

sin®(0) = % [sin(@)—-cos(2-6)-sin(0)]= % : {sin(&)— % [sin(3- 9)—sin(6’)]} =

:@+Ej.sin(a)_%%.sin(s.e):3'“”(9)—3‘“(3"9)

1.€.

-5 3-sin(@)-sin(3-0)
sin®(0) = 7 :

(29)
We evaluate sin® (0):

sin6(9)={3'Sin(9)fin(3'e)}2:%~[9-sinz(e)—6-sin(3-0)~sin(¢9)+sin2(3~0)]. G0

In the (25) identity we replace @ — 3-6, ¢ — 6 and it results

sin(3-9)-sin(9)= % [cos(3-0—6)—cos(3-0+6)|= % [cos(2-6)—cos(4-8)]. (31)
By replacing (31) in (30) it results

Sine(g):i.{g.l_L(z.e)_6.3.[Cos(z.g)_cos(4.€)]+]Ls(6m}’
16 2 2 2

in(0)= 1| 22 cos(2.0)-3-cos(2-6)+3-cos(4-8) + - — % . cos(6-
sin (6?)_16 {2 > cos(2-6)-3-cos(2-6)+3-cos(4 6?)+2 > cos(6 6’)}
11941 9+6 1

252270 (2. .cos(4-6)-=. :
% [ SR cos(2-60)+3-cos(4-6) > cos(6 9)}

sin6(6?):i{E—E-cos(2-6?)+3-cos(4~:9)—%~COS(6~0)}

sin®(0) =
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sin®(0) = 3—12 -[10-15-cos(2-6)+6-cos(4-0)—cos(6-6)). (32)
By replacing (32) in the (24) integral, it results
o .[SI d6?—£ {i-[10—15-cos(2-0)+6-cos(4-0)—cos(6-0)]}-d9,
oy 132
k, }[de-% Ocos( 0)- d0+9— jcos4 0) dH—— jcos )-dé,
10 ,» 5 1 . ~ 2 1 . « 1 1 . p
k, :9_7[-¢9|0—3.”-§-sm(2-0)|0+E-Z-sm(4-<9)|o—E-g-sm(ﬁ-@)o,
10 5 1
k, =—(7—0)———[sin(2- z)—sin(0)]+ —— - [sin(4- z)—sin(0)]-
9.7 6-7 6-7
—ﬁ-[sin(&ﬂg—sin(o)]:%-ﬂ:%.

10 10
It results Kk, = 9 and in a similar way it can be proved that k, = 9 It results the form
coefficients for a rectangular shape:

ky=—, k, == (33)

3.3. Numerical approach for a circular section
Let us consider that the area of the circle may be divided in AA increments according to the

calculus scheme presented in the following figure.

dh
-

A

Figure 3. Calculus scheme of the current small area AA .

The A, and A areas may be easily computed by applying relation (15) that was deduced for a

circular segment. This means that the integrals defined on the area of the circle with respect to dA
may be computed as a summation of AA small areas multiplied by the current function, i.e.

N
|j=jfj-dA=;fji-AA‘, (34)
A i=
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where N is the number of AA small areas in which the area of the circle is divided.

In order to test the procedure which uses small area and its accuracy, we consider some of the
geometrical characteristics of a circular section for which we have direct calculus relations, i.e.

j=l = fi=1= A=1, (35)
J=2 = f, =V, according to the previous figure = S, =1,, (36)
j=3 = f,=Vv’, according to the previous figure = I, = I,. (37)
For the k, form factor for shear we have
K =2, (38)
IY
where
s, Y s\
j=4 = f,=| | = |24 dA=1,. (39)
bY. A

In order to automatically perform the calculi we have developed a computer code. The first
function was developed to compute the attributes of a circular segment.

- C/C++ - Grmlar_%ment_ﬂ].t‘cirde form_factor_4_shear.cpp - Eclipse ‘

|File Edit Source Refactor Navigate Search Project Run Window Help

4

m

|""' G e @veEvdvegr SYRY BvOvQhvy &S SEE K i~ v oow E%Debug@”
- .« Cirde_form_factor_4_shear.cpp o o
<] 60// Output values, according to the ‘output_flag' parameter “ |E
= 6l// 1. If (output_flag == 1) ==> coordinate of the centroid along the vertical axis o

62// 2. If (output_flag == 2) ==> area g |5

63// 3. If (output_flag == 3) ==> length of the chord

64// 4. If (output_flag == 4) ==> length of the arc

65// 5. If (output_flag == 5) ==> height of the circular segment

66// 6. If (output_flag == 6) ==> I_v, second moment of area with respect to the vertical |centroid axis;

67// 7. If (output_flag == 7) ==> I_h, second moment of area with respect to the vertical |centroid axis;

68//

69 real s, s2, c, exprl, expr2, expr3, return_value;

70 if ((output_flag <1) || (output_flag > 7)) { // Check the flag if it is in the range

71 cout<<"Circular_Segment_0@: output_flag="<<output_flag<<" is not in the ";

72 cout<<"[1..7] range. Fatal error!"<<endl;

73 return_value=-999;

74} else {

75 if (ang_rad*rad2deg == 9) {

76 return_value=0.9;

77 } else {

78 s=sin(ang_rad);

79 c=cos(ang_rad);

80 switch (output_flag) {

81 case 1 : { // coordinate of the centroid

82 s2=sin(2*ang_rad);

83 return_value=4.0/3.8*r*s*s*s/(2*ang_rad-s2);

84 break; -

292Mof 508M @ 7 Writable Smart Insert 38:25 e 8

Figure 4. Sample computer code of the function which computes the attributes of a circular segment.

According to the previous figure, the output values of the ‘Circular Segment 00’ function are
identified by the use of the ‘output flag’ input parameter, and they are: coordinate of the centroid
along the vertical axis, area, length of the chord, length of the arc, ‘I v’ - second moment of area with
respect to the vertical centroid axis and ‘I h’ - second moment of area with respect to the vertical
centroid axis.

The second important function of the application is ‘Circle integral over area’ and, according to
the ‘output flag’ parameter, it computes the area, the first moment of area with respect to the
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horizontal axis or the second moment of area with respect to the horizontal axis for a circular cross
section, using the (35), (36) and (37) relations, figure 5.

= C/C++ - Circular_Segment_01/Circle_form_factor_4_shear.cpp - Eclipse’
B 1S L

| File Edit Source Refactor Navigate Search Project Run Window Help

e - Aave~y HvOovavw

L

W W w w L v
R IR RV I

340

341

342

344
345

346

350
351
352
353
354
355
356
« I
367M of 508M

§| w

-

< Circle_form_factor_4_shear.cpp i

h_i=0.0; A_i=0.0; Term=0.0; Sum=0.0;
for (i=1; i<=no_of_intervals; i++) {
it > ¢
h_i=h_ip1;
A_i=A_ip1l;
}
h_ipl=i*h_step;
ang_rad=acos(1-h_ipl/radius);

A_ipl=Circular_Segment_00(ang_rad,radius,2);

A=A_ipl-A_i;
switch (output_flag) {
case (1) : { // Area
function=1.0;
break;

}

case (2) : { // S_h, 1st moment of
v_coord=radius-0.5*(h_i+h_ip1);
function=v_coord;
break;

case (3) : { // I_h, 1st moment of
v_coord=radius-0.5*(h_i+h_ip1);
function=v_coord*v_coord;
break;

area

area

Writable

Smart Insert

»

288:31

Figure 5. Sample computer code of the
function which computes the area, the first
moment of area and the second moment of
area, of a circular section using the division

fRADE 4 B

of the domain in AA small areas.

The results of the calculus based on the (35), (36) and (37) relations are presented in table 1. As it
can be noticed, the errors are very small. Regarding the area, the error is zero because the AA small
areas are computed using the exact calculus relation and the area of the cross section is a summation of
these values. Regarding the first moment of area, for the entire section its value is zero. If this value is
used to compute the relative error, the denominator would be zero, therefore we consider the absolute
error. As it can be noticed, the errors are very small, i.e. 1.36396-1071°. Moreover, the computer code

offers the variation of the S, first moment of area along the vertical axis, in this way being possible to

automatically compute the shear stress using Juravschi’s relation, (™) :-:-—Z- S—Y
Y

second moment of area, the relative error is also very small, i.e. for N =10 the according relative
error being ¢ =—0.862 %, table 1. These results are accurate, therefore this calculus method based on
AA, small areas may be also used for the calculus of 1,, relation (39), and furthermore, k, using
relation (38).

The calculus of the k, form factor for shear is performed in the ‘Circle Form_factor for shear’
function, a sample code being presented in the following figure.

. Regarding the

10
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B

37C/C:+ - Cimlar_%mem_ﬂllcircle form_factor. a ihear‘cpp - Ecli

.5 Circle_form factor4_shear.cpp &

249 for
250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265
266}
267 //
268  ang
269  A=C
278 //
271 I_h
272 4/
273 res

File Edit Source Refactor Navigate Search Project Run Window Help

s HvEvEvEY RVEY BvOvAvY SCSv S@ bviy v - £ % Debug [E >

(i=1; i<=no_of_intervals; i++) {
h=i*h_step;
if (i » 1) {sidel = side2; A _cs_old=A cs_new;}
angle_rad=acos(1-h/radius);
angle_deg=angle_rad*rad2deg;
zC =Circular_Segment_e@(angle_rad, radius, 1); // the distance to the centroid;
b =Circular_Segment_e@(angle_rad, radius, 3); // the length of the chord;
A_cs=Circular_Segment_e@@(angle_rad, radius, 2); // the area of the circ. segm.;
side2=zC*A_cs/b*zC*A_cs/b;
A_cs_new=A_cs;
Function=0.5*(sidel+side2); // Linear approximation of the function under the integral
Delta_A=A_cs_new-A_cs_old;
t_area=Function*Delta_A;
integral=integral+t_area;
if (i_trace > @) {

cout<<i<<". h="<<h<<"; ang="<<angle_deg<<";"<<endl;

}

Area of the entire circle
le_rad=180@.0*deg2rad;
ircular_Segment_@@(angle_rad, radius, 2);
Second moment of area
=Circular_Segment_0@(angle_rad, radius, 7);

ult=A/I_h*2*integral/I_h;

“ i ]

314M of 508M

w0 Writable Smart Insert 2 -l =

doi:10.1088/1757-899X/227/1/012031

==

Figure 6. Sample computer code of the function which computes the k, form factor for shear.

The results of the calculus are presented in the following table. As it can be noticed, for N =10
the according relative error of the form factor for shear is & = 0.268 % , which is a small value.

Table 1. Results for R =100 mm

No of intervals, N 10 50 100 1000 Exact
A Value 31415.9 31415.9 314159 31415.9 31415.9
[mm?] £ [%] 0% 0% 0 % 0 %
S, Value -2.91038-10'" | -8.00355-10°!! [ -1.05501-1071° | 1.36396-101° 0
[mm?®] | Absolute & |-2.91038-10""|-8.00355-10!! | -1.05501-10'°| 1.36396-10!°
Iy Value 7.92171-10"7 | 7.85755-10"7 | 7.85492-10%7 | 7.85399-1077 |7.85398-10"7
[mm?] & [%] -0.862 % -0.045 % -0.011 % -0.0001 %
9.973 9.998 9.9997 10 10
K, Value — — —_— — —
9 9 9 9 9
[-] & [%] 0.26788 % 0.01067 % |2.6676-107 % | 2.6667-107° %

Analysing the results in the previous table it can be noticed that the method based on the AA

small areas yields accurate results. However, the N number of divisions of the circular cross section
must be carefully chosen if increased accuracy must be reached.

4. Conclusions
The analytical approaches and the numerical studies presented in the paper offer the same results. The
numerical approach is based on the power of the definitions and on the speed and accuracy of the
computer based studies.

11
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The knowledge acquired from this study will be used for several purposes. A first direction is to
compute the K, form factors for a ring-like sections because this cross section is widely used. The

form factors must be computed for several k = —mer

ratios, in this way the structural analysts being
outer

allowed to select the appropriate value. We plan to use both the analytical and the numerical methods
in order to accomplish this goal. Other direction is to create parameterized ‘simple shapes’ to be used
in the calculus of the geometrical characteristics and of the stresses in complex composite sections, i.e.
ship hull cross sections. In this way we plan to create algorithms for an inclined circular section and
then for an inclined circular ring segment. The according calculus relations, algorithms and computer
codes may be also implemented in computer aided design commercial software in order to create
customized design commands.
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