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Abstract. The paper presents an initial study concerning the form factors for shear, for a 

rectangular and for a circular cross section, being used an analytical method and a numerical 

study. The numerical study considers a division of the cross section in small areas and uses the 

power of the definitions in order to compute the according integrals. The accurate values of the 

form factors are increasing the accuracy of the displacements computed by the use of the strain 

energy methods. The knowledge resulted from this study will be used for several directions of 

development: calculus of the form factors for a ring-type cross section of variable ratio of the 

inner and outer diameters, calculus of the geometrical characteristics of an inclined circular 

segment and, using a Bool algebra that operates with geometrical shapes, for an inclined 

circular ring segment. These shapes may be used to analytically define the geometrical model 

of a complex composite section, i.e. a ship hull cross section. The according calculus relations 

are also useful for the development of customized design commands in CAD commercial 

applications. The paper is a result of the long run development of original computer based 

instruments in engineering of the authors. 

1. Introduction 

Several types of models may be developed when a phenomenon is being studied. Analytical models 

are using the classic knowledge in the field which is based on simplifying hypotheses. These 

assumptions were useful in order to minimise the amount of calculi by accepting a certain inaccuracy. 

Nowadays calculus instrument is the computer and it offers speed and accuracy when a certain volume 

of calculi must be performed. Moreover, it may be used for the integration of the various studies 

offering an overview regarding the phenomenon under investigation [1]. Regarding the analytical 

models, the computer may be used to disregard the classic hypotheses, for instance the small 

displacements assumption, by the use of the numerical integration [2]. In order to use the opportunities 

offered by the nowadays information technology development, the classic problems must be 

reformulated starting from the idea that the computer and the computer programming are the main 

calculus instruments. This approach includes the mathematical background of the problems which 

must be considered from a new perspective [3].  
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2. Analytical context and problem formulation  

Calculus of the displacements of a given structure may be done using several approaches, for instance 

the method of initial parameters or using strain energy methods. In what follows, we consider the 

strain energy methods. An initial way to express the strain energy takes into account the stresses: 
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where E  is Young’s modulus and G  is the shear modulus or the modulus of rigidity. 

For simple axial loads the normal stress may be computed using the relation 
A

NN  , where A  is 

the area of the cross section and the according strain energy is 

   
 














i

N

L ii

i dx
AE

xN
U

2

2


.     (2) 

For pure bending with YM  or ZM , the according normal stresses are z
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ZM Z  , where YI  and ZI  are the second moments of area. The according strain energy 

relations are 
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For the YT  and ZT  shear forces, the shear stresses may be computed using Juravschi’s relations 
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of the cross section in the current point where the shear stresses are computed. The according strain 

energy relations are 
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are designated form factors for shear. 

The XM  twisting moment is generating the shear stress 
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moment of area and the according strain energy is 
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Using the principle of superposition, the energy produced by all internal forces and moments along 

an interval of iL   length is 
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For a structure consisting of ‘ N ’ intervals for which the geometrical characteristics and the 

material constants are identical for each interval while the internal forces and moments may have a 

certain variation along the interval, the strain energy is [4]: 
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If we place a unit dummy load along the K  unknown displacement, and we remove the real loads, 

it results the functions of the internal forces and moments  xn ,  xtY ,  xtZ ,  xmX ,  xmY  and 

 xmZ  on the same interval, ‘ i ’, as the real internal forces and moments.  

By applying the Reciprocal Work Theorem or Betti’s Theorem, it results the expression of the 

unknown displacement  
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In most of the ‘classic’ approaches the students are disregarding the effects of the internal forces. 

However, using the actual computing instruments and considering the accuracy of the results an 

important goal of the computer based analytical models, we must take into account the terms where 

the shear force appears in the previous relation, i.e. the Yk  and Zk  form factors for shear. 

3. Discussion   

The form factors may be computed analytically for simple shape cross sections. So far we haven’t 

found proofs of the form factors for shear, the according values for simple shapes being taken from 

one book to another [5].  

For complex composite shapes there may be conceived numerical approaches, in this case being 

necessary a new formulation of the problem. 
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3.1. Analytical approach for a rectangular section 

Let us consider the calculus scheme presented in the following figure. As it may be noticed, we use the 

symmetry of the domain with respect to the vertical axis. Let us consider a point located at distance z  

in respect to the horizontal axis. Between the current point and the bottom most boundary of the 

section is the subdomain for which we consider the first moment of area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Calculus scheme for a rectangular section. 

 

The first moment of area is: 
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  The Zk  form factor for shear presented in (5) becomes 
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coefficients for a rectangular shape: 
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3.2. Analytical approach for a circular section 

Let us consider the circular cross section in the figure below. We consider a horizontal line at 

distance 0z  and, from this line, an infinite small distance, dz , which defines an infinite small area, 

dA , of a curvilinear rectangular region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Calculus scheme for a circular section. 
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The next stage is to evaluate the first moment of area. 

The dA  infinite small area may be expressed as the area of a curvilinear rectangle, i.e. 

dzBDdA   .      (16) 

 z  coordinate may be also expressed with respect to radius R  and angle   in the right angled 

triangle BOC : 

 cos Rz .      (17)  

The according derivative is: 

   dRzd  sin .      (18) 

The expression of the infinite small area, dA , becomes 

        dRdRRdzBDdA

dzBD

 22 sin2sinsin2


.      (19) 

The first moment of area is calculated as an integral for the infinite small area, dA : 

           




0

23

0

22 cossin2sin2cos dRdRRdAzzS

dAzA

Y   
. 

          
 







0

3
3

0

23

0

23

3

sin
2sinsin2cossin2 











  RdRdRzSY . 

It results the expression: 

   33 sin
3

2
 RzSY

.      (20) 

The position of the centroid with respect to the centre of the circle is: 

 

  

 
 















2sin2

sin

3

4

2sin2
2

sin
3

2
3

2

33

R
R

R

A

S
Z Y

G .   (21) 

   The second moment of area of the circular section is: 

  44

44

464

16

64

2

64
RR

Rd
IY 











.   (22). 

  The width of the section is  

 sin2  RBDbY .      (23) 

  In this case, the form factor is 

 

 














































AA Y

Y

Y

Z dA
R

R

R

R
dA

b

S

I

A
k

2

33

2

4

2
2

2 sin2

sin
3

2

4








, 

    












AA

Z dA
R

dAR
R

k 





4

2

2

22

6
sin

1

9

16
sin

3

1116
. 

  According to (19),    dRdA  22 sin2 , it results 
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       















0

6

0

224

2
sin

9

32
sin2sin

1

9

16
ddR

R
kZ . (24) 

 We consider the following product-to-sum identities: 

         coscossinsin2    

          coscos
2

1
sinsin .    (25) 

         sinsinsincos2    

          sinsin
2

1
sincos .    (26) 

  We evaluate  3sin : 

       
 

      


 sin2cossin
2

1

2

2cos1
sinsinsinsin 23 


 .      (27) 

  In the (26) identity we replace   2 ,    and it results 

              sin3sin
2

1
2sin2sin

2

1
sin2cos  .       (28) 

  By replacing (28) in (27), it results 

               

   
   

4

3sinsin3
3sin

2

1

2

1
sin

4

1

2

1

sin3sin
2

1
sin

2

1
sin2cossin

2

1
sin 3





























 

i.e. 

 
   

4

3sinsin3
sin 3 




 .     (29) 

 We evaluate  6sin : 

 
   

        


 






 
 3sinsin3sin6sin9

16

1

4

3sinsin3
sin 22

2

6
.     (30) 

  In the (25) identity we replace   3 ,    and it results 

               4cos2cos
2

1
3cos3cos

2

1
sin3sin .     (31) 

 By replacing (31) in (30) it results 

 
 

    
 







 





2

6cos1
4cos2cos

2

1
6

2

2cos1
9

16

1
sin 6 




 , 

         







  6cos

2

1

2

1
4cos32cos32cos

2

9

2

9

16

1
sin 6

, 

       













  6cos

2

1
4cos32cos

2

69

2

19

16

1
sin 6

, 

       







  6cos

2

1
4cos32cos

2

15

2

10

16

1
sin 6

, 
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          6cos4cos62cos1510
32

1
sin 6

.   (32) 

  By replacing (32) in the (24) integral, it results 

         
























00

6 6cos4cos62cos1510
32

1

9

32
sin

9

32
ddkZ , 

      



























0000

6cos
9

1
4cos

9

6
2cos

9

15

9

10
ddddkZ , 

     











 0000
6sin

6

1

9

1
4sin

4

1

3

2
2sin

2

1

3

5

9

10












Zk , 

           









     00

0sin4sin
6

1
0sin2sin

6

5
0

9

10









Zk  

    
9

10

9

10
0sin6sin

54

1

0







 



    . 

 It results 
9

10
Zk  and in a similar way it can be proved that 

9

10
Yk . It results the form 

coefficients for a rectangular shape: 

9

10
Yk , 

9

10
Zk .     (33) 

3.3. Numerical approach for a circular section 

Let us consider that the area of the circle may be divided in iA  increments according to the 

calculus scheme presented in the following figure. 

 

 
 

Figure 3. Calculus scheme of the current small area iA . 

 

The 1iA  and iA  areas may be easily computed by applying relation (15) that was deduced for a 

circular segment. This means that the integrals defined on the area of the circle with respect to dA  

may be computed as a summation of iA  small areas multiplied by the current function, i.e. 





N

i

ij

A

jj AfdAfI
i

1

,    (34) 
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where N  is the number of iA  small areas in which the area of the circle is divided. 

In order to test the procedure which uses small area and its accuracy, we consider some of the 

geometrical characteristics of a circular section for which we have direct calculus relations, i.e. 

1j    11 f    1IA  ,      (35) 

2j    ivf 2 , according to the previous figure   2ISY  , (36) 

3j    
2

3 ivf  , according to the previous figure   3IIY  .  (37) 

For the Zk  form factor for shear we have 

42
I

I

A
k

Y

Z  ,      (38) 

where 

4j    

2

4 














i

i

Y

Y

b

S
f    4

2

IdA
b

S

iA Y

Y 









 .    (39) 

In order to automatically perform the calculi we have developed a computer code. The first 

function was developed to compute the attributes of a circular segment. 

 

 
 

Figure 4. Sample computer code of the function which computes the attributes of a circular segment. 

 

According to the previous figure, the output values of the ‘Circular_Segment_00’ function are 

identified by the use of the ‘output_flag’ input parameter, and they are: coordinate of the centroid 

along the vertical axis, area, length of the chord, length of the arc, ‘I_v’ - second moment of area with 

respect to the vertical centroid axis and ‘I_h’ - second moment of area with respect to the vertical 

centroid axis. 

The second important function of the application is ‘Circle_integral_over_area’ and, according to 

the ‘output_flag’ parameter, it computes the area, the first moment of area with respect to the 
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horizontal axis or the second moment of area with respect to the horizontal axis for a circular cross 

section, using the (35), (36) and (37) relations, figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sample computer code of the 

function which computes the area, the first 

moment of area and the second moment of 

area, of a circular section using the division 

of the domain in iA  small areas. 

 

The results of the calculus based on the (35), (36) and (37) relations are presented in table 1. As it 

can be noticed, the errors are very small. Regarding the area, the error is zero because the iA  small 

areas are computed using the exact calculus relation and the area of the cross section is a summation of 

these values. Regarding the first moment of area, for the entire section its value is zero. If this value is 

used to compute the relative error, the denominator would be zero, therefore we consider the absolute 

error. As it can be noticed, the errors are very small, i.e. 1.36396·10-10. Moreover, the computer code 

offers the variation of the YS  first moment of area along the vertical axis, in this way being possible to 

automatically compute the shear stress using Juravschi’s relation, 
 











Y

Y

Y

ZT

b

S

I

T
Z . Regarding the 

second moment of area, the relative error is also very small, i.e. for 10N  the according relative 

error being % 0.862 , table 1. These results are accurate, therefore this calculus method based on  

iA  small areas may be also used for the calculus of 4I , relation (39), and furthermore, Yk  using 

relation (38). 

The calculus of the Yk  form factor for shear is performed in the ‘Circle_Form_factor_for_shear’ 

function, a sample code being presented in the following figure. 
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Figure 6. Sample computer code of the function which computes the Zk  form factor for shear.  

 

The results of the calculus are presented in the following table. As it can be noticed, for 10N  

the according relative error of the form factor for shear is % 0.268 , which is a small value. 

 

Table 1. Results for mmR 100  

No of intervals, N  10 50 100 1000 Exact 

A  Value 31415.9 31415.9 31415.9 31415.9 31415.9 

[mm2]   [%] 0 % 0 % 0 % 0 %  

YS  Value -2.91038·10-11 -8.00355·10-11 -1.05501·10-10 1.36396·10-10 0 

[mm3] Absolute   -2.91038·10-11 -8.00355·10-11 -1.05501·10-10 1.36396·10-10  

YI  Value 7.92171·10+7 7.85755·10+7 7.85492·10+7 7.85399·10+7 7.85398·10+7 

[mm4]   [%] -0.862 % -0.045 % -0.011 % -0.0001 %  

Zk  Value 
9

9.973
 

9

9.998
 

9

9.9997
 

9

10
 

9

10
 

[-]   [%] 0.26788 % 0.01067 % 2.6676·10-3 % 2.6667·10-5 %  

 

Analysing the results in the previous table it can be noticed that the method based on the  iA  

small areas yields accurate results. However, the N  number of divisions of the circular cross section 

must be carefully chosen if increased accuracy must be reached. 

4. Conclusions 

The analytical approaches and the numerical studies presented in the paper offer the same results. The 

numerical approach is based on the power of the definitions and on the speed and accuracy of the 

computer based studies.  
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The knowledge acquired from this study will be used for several purposes. A first direction is to 

compute the Yk  form factors for a ring-like sections because this cross section is widely used. The 

form factors must be computed for several 

outer

inner

D

d
k   ratios, in this way the structural analysts being 

allowed to select the appropriate value. We plan to use both the analytical and the numerical methods 

in order to accomplish this goal. Other direction is to create parameterized ‘simple shapes’ to be used 

in the calculus of the geometrical characteristics and of the stresses in complex composite sections, i.e. 

ship hull cross sections. In this way we plan to create algorithms for an inclined circular section and 

then for an inclined circular ring segment. The according calculus relations, algorithms and computer 

codes may be also implemented in computer aided design commercial software in order to create 

customized design commands. 
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