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Abstract. The research conducted in this article aimed to check the quality of joining some 

dissimilar materials Al-Cu by determining the mechanical properties and microstructure 

analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A 

with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld 

overlay. The main welding parameters were: rotating speed of the rotating element 1400 

rev/min, speed of the rotating element 50 mm/min. The experimental results were determined 

on samples specially prepared for metallographic analysis. In order to prepare samples for their 

characterization, there was designed and built a device that allowed simultaneous positioning 

and fixing for grinding. The characteristics analyzed in the joint welded samples were 

mictrostructure, microhardness and residual stresses. The techniques used to determine these 

characteristics were optical microscopy, electron microscopy with fluorescence radioactive 

elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry. 

1. Introduction 

These is a process for joining in solid-state purely mechanical, which is based on heating by friction 

and plastic deformation of the material welded, obtained from the interaction of a tool for non 

consumable welding, which rotates on contact surfaces of the parts to be joined. 

The welding tool is moved at the welding speed along the weld line. The material brought in plastic 

state is transferred to the rear part of the tool, creating a welded joint [1-3]. 

The maximum temperature reached is about 0.8 parts of the melting temperature. In contrast to 

conventional friction welding, the FSW process overlaps the effect of heating on the mechanical effect 

of mixing the welded materials. 

The parts to be assembled are positioned without clearance on a base plate and are fixed so as to 

avoid any relative movement between them during the welding process [4-5]. The welding tool has a 

specified configuration, being formed of two parts: a cylindrical bulk portion called shoulder and the 

end which actually mixes the joining material called pin. After fixing the materials to be joined, the 

welding tool is driven in a rotation and translation movement to the fixed parts. The pin penetrates the 

materials until the surface of the materials to be joined comes into contact with the shoulder. As a 

result of the friction between shoulder and base material, locally, it is released a quantity of heat which 

has the effect of plasticizing the materials to be joined. At this point, the welding tool, by the 

equipment, is engaged in a translational movement. As the rotating element is moved in the welding 

direction, the material in front of the pin, softened due to heating by conduction, is trained in the space 

behind the welding tool, which is freed by advance of the tool. The rear of the shoulder forges the 



2

1234567890

ModTECH IOP Publishing

IOP Conf. Series: Materials Science and Engineering 227 (2017) 012065 doi:10.1088/1757-899X/227/1/012065

deformed material, leaving a smooth nugget. The local deformation process is assimilated to a process 

of continuous extrusion on the length of joint [6-7]. 

The research conducted in this article was aimed at obtaining experimental results to determine the 

physical and mechanical properties and microstructure analysis of the joint obtained by the FSW 

process for materials Aluminium - Copper. For experimental measurements there were used EN-AW-

1050 sheet with thickness of 3 mm and Cu 99 sheet with thickness of 3 mm, joined by FSW butt 

welding. The main welding parameters applied were: rotating speed of the rotating element 1400 rev / 

min, speed of the rotating element 50 mm / min and position of pin 90% on Aluminum. 

 

2. Experimental procedure 

2.1 FSW process and materials used 

It was used the FSW butt process consisting of assembling two parts in contact, fixed by clamp which 

allows the formation of a linear weld nugget. 

 

Table 1 Chemical composition [%] of material Cu99. 

Alloy Ag As Bi Cu+Ag Fe Pb 

Min - - - 0.99 - - 

Max 0.15 0.2 0.005 - 0.1 0.03 

 

Table 2 Chemical composition [%] of material EN-AW-1050A. 

Alloy Si  Fe  Cu  Mn Mg  Cr  Zn  Ti  Others Al  

1050A 0.5  0.4  0.05  0.01  -  0.01  0.07  0.05  0.03 99.5 

 

2.2 Parameters used to obtain the joint 

The materials used to obtain the joint were Cu99 and AA 1050, both having a thickness of 3 mm. The 

joint scheme is of butt type, figure 1, and the type of pin used is with four bevels, having a length of 4 

mm. The pin was positioned 90% on Al, and the rotation of the pin was clockwise. The parameters 

used to obtain the joint were rotation speed 1400 [rev / min] and speed of 50 [mm / min]. 

 

 
Figure 1. Scheme of the butt joint. 

 

2.3 Methods and means used in the characterization of welded joints 

Sample preparation. Analysis of welded joints sought to highlight their main macro and microscopic 

features, the evolution of microhardness in the joint zone, as well as the state of residual stress relative 

to the characteristics of the base materials joined.  

In order to prepare the samples for their characterization, there was designed and made a positioning 

and fixing device, figure 2  that allowed simultaneous positioning and fixing them for polish, optical 

microscopy analysis, microhardness measurement and determination of residual stresses. 

 

Cu Al 
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The samples were polished smoothly by 

sanding with grit sandpaper of 320 and 800, 

grit diamond paste of 5 m 

Analysis of the microstructure. For the 

analysis of the microstructure there were used 

optical microscopy techniques (to characterize 

base materials and joining zone) and electron 

microscopy by fluorescence radioactive 

elemental analysis (EDS) for the detailed 

analysis of the weld zone. In this respect, the 

samples were attacked as follows: 

- solution Keller (F2) - to highlight the 

microstructure of Al; 

- solution (E1) - to highlight the 

microstructure of Cu 

 Figure 2. Scheme of the device to prepare and 

analyze the samples. 

 

Microhardness measurement. To measure microhardness there was used the Vickers method, which 

consists in applying to the part to be tested a load F, for a determined period of time (10 seconds) by 

means of a diamond penetrator having the form of a right pyramid with a square base and the angle 

between two opposite sides of 136o.There have been various lines of hardness; the step between two 

fingerprints is of 1 mm. 

Determination of residual stresses. The stresses were measured along a line of 12 mm, step of 1 [mm], 

starting with the Al material, continuing to the mixing zone, and ending with the Cu material (for the 

parts butt joined). On the part obtained by weld overlay, residual stresses were determined in each of 

the two materials in directions parallel to the nugget.  

X-ray incident spot size was approximately 1.03 [mm] in diameter. For data acquisition, there were 

used X-rays with wavelength CrKα. Operational parameters of the X-ray tube were: accelerating stress 

40 kV, filament current of 40 mA. 

 

3. Results and discussion 

 

3.1 Microscopy analysis 

There were investigated several zones of joint, figure 5, images of the nugget, acquired by EDS 

technique, as shown in figure 3. 

 

 

Figure 3. Position of the zones analysed. 



4

1234567890

ModTECH IOP Publishing

IOP Conf. Series: Materials Science and Engineering 227 (2017) 012065 doi:10.1088/1757-899X/227/1/012065

 

 

 

P1.1 P1.2 P1.3 

 

 

 

P1.4 P1.5 P1.6 

Figure 4. Morphology of the joint zone. 
 

 

Joint microstructure and chemical composition in zones (sites) marked in figure 4 are presented in 

figures 5. It can be observed the presence of the two base metals of materials used in the joining 

process, copper and aluminium, as well as the mixing area. 

Analysis of figures and spectra presented in these tables highlight the following issues: 

- the joining area has an irregular shape (the outline of the joint area is approximately shown in figure 

5 and many "gap" type defects have an acceptable quality of the joining process; 

- pieces of Copper are ripped and brought to the site of Al and in the zone where should have been the 

nugget. 

 

 

 

Site 1 



5

1234567890

ModTECH IOP Publishing

IOP Conf. Series: Materials Science and Engineering 227 (2017) 012065 doi:10.1088/1757-899X/227/1/012065

 

 

Site 2 

 

 

 Site 3 

Figure 5. Microstructure and chemical composition. 

 

3.2 Microhardness of the joint 

There were made two lines of micro-hardness, in the cross section of the joined parts, figure 6, in the 

direction parallel to the outer surfaces of the joined parts 

 

 
 

L 1 

 

 

L 2 

     
Figure 6. Macrographs of microhardness lines for P1. 

 

Each of these lines were placed at about 1 mm from the edges (1 mm or so between them), the load 

used was 300 g, and the step of 1 mm. The first line has 9 valid values (default values at the measuring 

points 4 and 7, in the joining zone, due to the existence of gaps in this zone), while the second line has 

11 values. The micro-hardness values thus obtained are shown in figure 7. 

It is noted that in the joint zone there is an increase of microhardness values in relation to the values of 

microhardness of the base materials (86 HV0.3 for Cu, respectively, 26 HV0.3 for Al). Thus, the 

maximum values of microhardness in the joint zone are over 120 HV0.3, which highlight significant 



6

1234567890

ModTECH IOP Publishing

IOP Conf. Series: Materials Science and Engineering 227 (2017) 012065 doi:10.1088/1757-899X/227/1/012065

increases of microhardness. These are over more than 50% compared to the "toughest" base material 

(Cu) and over 360% compared to the "softest" base material (Al). 

By correlating hardness with the mechanical properties and mechanical strength it can be concluded 

that tensile strength of the joint zone is greater than the tensile strength of any of the materials joined. 

 

1 2 3 4 5 6 7 8 9 10 11

F 1 86 84,1 78,2 123,8 92,3 81,4 28 26,4 25

F 2 84 87,6 67 52 45,6 120,8 125,1 61,9 25,3 25,9 26
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Figure 7. Values of microhardness for P1. 

 

3.3 Residual stress 

The values of residual stress determined are shown in table 3; table 4 and 5 show the experienced 

values of angles and diffraction intensities measured for some points on the measuring line located in 

Aluminium material (figure 4) and Copper material (figure 5). 

It is noted that: 

- residual stresses from all measuring points are compressive; 

- these stresses, in absolute terms, are significantly higher in the joint zone. 

The presence of compressive stresses with a significantly higher value in the joint zone also confirms 

the plastic deformation in the joint zone. 

 

Table 3. Residual stress values for sample 1. 

Position of measuring 

point in Al, compared 

to junction Al-Cu 

(mm) 

 
(MPa) 

 
(MPa) 

Position of 

measuring point in 

Cu, compared to 

junction Al-Cu (mm) 

 
(MPa) 

 
(MPa) 

28 -35.50 6.70 0.1 -122.45 13.47 

4.5 -31.26 4.97 0.6 -138.61 35.84 

4.1 -32.66 8.61 1.1 -121.81 20.02 

3.6 -13.33 6.11 2.6 -41.23 12.23 

3.3 -35.86 8.07 3.1 -54.45 22.02 

2.0 -67.79 14.90 3.5 -77.94 19.84 

1.6 -49.57 14.29 20 -97.15 9.25 

1.1 -53.90 20.12    

0.7 -169.54 61.70    
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Table 4. Values experienced of angles and diffraction intensities measured in Al, at 

the position 4.5 mm from the joint line. 

 
 

Table 5. Values experienced of angles and diffraction intensities measured in Cu, 

at the position 0.1 mm from the joint line. 
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4. Conclusions 

Analysis of figures and spectra presented in these tables highlights the following issues: 

 - joining zone has an irregular shape (the outline of the joint zone is approximately shown in 

figure 5) and many "gap" type defects; 

 - pieces of Copper are ripped and brought to the site of Aluminium and in the zone where 

should have been the nugget. 

The analysis of hardness reveals that in the joint zone there is an increase of microhardness values in 

relation to the values of microhardness of the base materials (86 HV0.3 for Cu, respectively, 26 HV0.3 

for Al). Thus, the maximum values of microhardness in the joint zone are over 120 HV0.3, which 

highlight significant increases of microhardness. These are over more than 50% compared to the 

"toughest" base material (Copper) and over 360% compared to the "softest" base material 

(Aluminium). 

By correlating hardness with the mechanical properties and mechanical strength it can be concluded 

that tensile strength of the joint zone is greater than the tensile strength of any of the materials joined. 

By analyzing the residual stresses in the joint zone and in its neighbourhood it is noted that: 

- residual stresses from all measuring points are compressive; 

- these stresses, in absolute terms, are significantly higher in the joint zone. 
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