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Abstract. Workflow scheduling under multiple QoS constraints is a complicated optimization 

problem. Metaheuristic techniques are excellent approaches used in dealing with such problem. 

Many metaheuristic based algorithms have been proposed, that considers various economic and 

trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-

defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization 

(PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve 

performance in such situations. LAPSO algorithm is designed based on synergy between a 

violation handling method and a hybrid of PSO and min-max heuristic. Simulation results 

showed a great potential of LAPSO algorithm to handling user requirements even in tight 

situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the 

impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved 

by removing the violation handling from the operation of the algorithm. The results show that 

LAPSO based on only the min-max method still outperforms the benchmark, even though the 

LAPSO with the violation handling performs more significantly better. 

Keywords: Service-orientated Computing; Workflow application; Scheduling; multiple QoS; 

Particle Swarm Optimisation (PSO). 

1.  Introduction 

Workflow Management Systems (WFMSs) enable seamless binding of computing infrastructures from 

geographically distributed service domains. The primary aim of a QoS-aware WFMS is to provide 

transparent and efficient access to these distributed services as well as provide the needed QoS 

satisfaction to EUs with diverse QoS requirements. The delivery of QoS is a challenging task due to the 

heterogeneous and dynamic nature of the service platforms. In addition, large number of service 

providers exists in the web market, each with different economic and social attributes. Therefore, 

efficient workflow scheduling strategies are needed to provide the needed level of QoS satisfaction.  

To address this demand, numerous researches have been reported in literature [1]–[8]. These 

researches have been categorized based on: the number of user QoS objectives considered in scheduling 

model; the method for handling user constraints and preferences; and the kind of optimization strategy 

employed [6].  The schemes proposed in [4], [5] and [6] supported six user objectives, constraints and 
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preferences. However, economic cost is not considered in [4]. The scheduling model in [5] took into 

account the user parameters that included time, cost, reliability, availability, security and reputation, 

which were aggregated into single objective function using weighted sum approach. The authors 

proposed a rotary chaotic PSO (RCPSO) algorithm to optimize the multi-objective function for high 

quality scheduling solutions. The RCPSO hybridized chaos method and PSO optimization technique. 

However, it results to high violation of user-defined constraints in tight situations.  To address this 

problem, recently a new scheme is proposed in [6] that enhanced both the scheduling model and 

optimization method of RCPSO. The new scheduling model is based on dual function approach, where 

a function for violation detection is incorporated in addition to the RCPSO’s fitness function for better 

violation handling. Then a Look-ahead PSO (LAPSO) optimization algorithm is proposed, which 

integrated a min-max heuristic in PSO. The idea of the optimization approach was to use a deterministic 

guided approach for PSO-based solution search. Simulation results showed a great potential of LAPSO 

algorithm to handling user requirements even in tight situations. In this paper, the performance of the 

algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the 

algorithm is revealed. This is achieved by removing the violation handling from the operation of the 

algorithm. The results show that LAPSO based on only the min-max method still significantly 

outperform the benchmark, even though the LAPSO with the violation handling performed far better.  

2.  The LAPSO Algorithm 

In this section, the overview of LAPSO Algorithm is explained. LAPSO algorithm is based on the 

interaction between two important components: constraint handling algorithm and hybrid metaheuristic 

optimization algorithm. These components are described in detail in the following subsections. 

2.1.  Violation handling Algorithm 

A multi-QoS constraint handling algorithm is proposed to minimize constraints violations. The purpose 

of the algorithm is to aid in selecting good scheduling solutions from the pool of solutions produced by 

PSO. The algorithm is based on the introduced scheduling model with dual functions: the violation 

function 𝜆𝜙 and objective function 𝒲𝜙. These models are defined in Equation (1) and Equation (2) for 

evaluation and selection of solutions. The violation function tracks cumulative violation levels of 

scheduling solutions with the aim of meeting user hard requirements. The objective function computes 

the aggregate value of the multiple objective functions. It evaluates solutions based on their cumulative 

achievement for the optimization of user soft requirements. More details of the selection algorithm can 

be found in [6]. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝜆𝜙 =  δ𝜋𝑑𝑙𝑛
+ δ𝜋𝑏𝑔𝑡

+ δ𝜋𝑟𝑒𝑙
+ δ𝜋𝑎𝑣𝑙

+ δ𝜋𝑠𝑒𝑐
+ δ𝜋𝑟𝑒𝑝

      

𝑠. 𝑡  𝜆𝜙 = 0.         (1) 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒲𝜙  = 𝓌1 (1 −  
𝑀𝜙

𝒟
) + 𝓌2 (1 −  

𝐶𝜙

ℬ
) + 𝓌3 (

𝑅𝜙

ℛ
− 1)  + 𝓌4 (

𝐴𝜙

𝒜
− 1) +

𝓌5 (
𝑆𝑒𝑐𝜙

𝒮
− 1) + 𝓌6 (

𝑅𝑒𝑝𝜙

Ɽ
− 1)                      (2) 

2.2.  Hybrid PSO and Min-Max  

LAPSO algorithm is based on PSO algorithm and min-max heuristic. PSO is a population-based 

heuristic strategy for a solution search. It belongs to the class of swarm intelligence and shares similarity 

with GA in terms of starting with random solutions [9]. The LAPSO algorithm optimizes scheduling 

solution by using PSO as baseline algorithm to iteratively search for and produce good solutions. In 

each iteration, the best solution produced by PSO is enhanced using the auxiliary min-max heuristic. 

The min-max heuristic improves PSO’s solution by relieving a task randomly assigned to a poor service 

and reassigning it to an alternative service that improves its QoS. The min-max also reduces CPU time 

by minimizing the number of invalid solutions produced by PSO.  
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2.3.  Particle Updating 

PSO’s particle updating stage is the core phase where min-max heuristic is employed in LAPSO. In the 

beginning, the algorithm adopted the RD rule and history velocity cancellation methods [5]. Then a task 

remapping strategy based on the min-max heuristic is designed to improve the global best solution 

(𝑔𝐵𝑒𝑠𝑡) found at the end of each iteration. Firstly, the fitness function is de-aggregated into the multiple 

distinct objective functions. In order to improve the global best solution, the idea is to maximise the QoS 

dimension that has the minimum normalised QoS value from among all its six QoS dimensions. This is 

based on the premise that the quality of each solution is composed of its value with respect to each of 

the six QoS objectives. The problem is considered a max-min problem based on the Decision Theory 

and is expressed as:  
 

max [min (𝒲𝜙
𝑚, 𝒲𝜙

𝑐 , 𝒲𝜙
𝑟 , 𝒲𝜙

𝑎 , 𝒲𝜙
𝑠 , 𝒲𝜙

𝑟𝑒𝑝
)]                 (3) 

 

A task remapping algorithm called Look-ahead QoS-aware Task-Remapping Algorithm (LATR) 

(Algorithm 1) is designed based on min-max heuristic. The whole idea of this approach is that 

maximising the inferior mapping string results to maximisation of the inferior parameter, which in turn 

improves the quality of the entire solution. The operation of the algorithm is detailed in [6]. 

 

Algorithm 1: Look-ahead QoS-aware Task-Remapping Algorithm (LATR) [6] 

 Input: 𝜙𝑏𝑒𝑠𝑡
𝑡  

 Output: 𝜙𝑏𝑒𝑠𝑡
+   

1 𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟  ←  𝑆𝑒𝑎𝑟𝑐ℎ()𝑄𝑜𝑆𝑆𝑒𝑡𝑏𝑒𝑠𝑡
 

2  𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 ←  𝑆𝑒𝑎𝑟𝑐ℎ(𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)𝑀𝑎𝑝𝑆𝑒𝑡𝑏𝑒𝑠𝑡
 

3 counter ← 1  //first attempt to improve 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟
 

4 𝜙𝑑𝑒𝑡𝑒𝑟𝑚 ← 𝜙𝑏𝑒𝑠𝑡
𝑡−1   

5 𝛷г

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟  ←  𝑆𝑒𝑎𝑟𝑐ℎ(𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)𝑀𝑎𝑝𝑆𝑒𝑡𝑑𝑒𝑡𝑒𝑟𝑚
 

6 If 𝛷г

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 > 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟
 then 

7  𝐴𝑆 ←  𝑠г
ℎ 

8  temp ← copy of 𝜙𝑏𝑒𝑠𝑡
𝑡  

9  𝑡𝑒𝑚𝑝 ←  𝑅𝑒𝑚𝑎𝑝(ℎ, 𝐴𝑆)  

10  Calculate 𝜆𝑡𝑒𝑚𝑝 using Equation (1) 

11  If 𝜆𝑏𝑒𝑠𝑡 = 0 then //best solution is feasible 

12   If 𝜆𝑡𝑒𝑚𝑝 = 0 then 

13    Calculate 𝒲𝑡𝑒𝑚𝑝 using Equation (2)  

14    If 𝒲𝑡𝑒𝑚𝑝 >  𝒲𝑏𝑒𝑠𝑡 then 

15     𝜙𝑏𝑒𝑠𝑡
+ ← 𝑅𝑒𝑚𝑎𝑝(ℎ, 𝐴𝑆) 

16  Else //𝜆𝑏𝑒𝑠𝑡 > 0 (best is infeasible) 

17   If 𝜆𝑡𝑒𝑚𝑝 < 𝜆𝑏𝑒𝑠𝑡 then 

18    𝜙𝑏𝑒𝑠𝑡
+ ← 𝑅𝑒𝑚𝑎𝑝(ℎ, 𝐴𝑆)  

19 Else 

20  If counter ← 1 then 

21   counter ++ //second attempt to improve 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟
 

22   𝜙𝑑𝑒𝑡𝑒𝑟𝑚  ←  𝑟𝑎𝑛𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑆𝑂 𝑠𝑤𝑎𝑟𝑚) 
23   Go to line 5 

24 Return 𝜙𝑏𝑒𝑠𝑡
+  

 

3.  LAPSO Algorithm without Violation Handling (VH) 
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In this section, the LAPSO algorithm without VH is highlighted. LAPSO without VH means removing 

Equation (1) in the operations of LAPSO. The equation is responsible for detecting the presence of 

violation of user requirements in scheduling solutions, which has significant influence in the 

performance of LAPSO. This is because it directs the LAPSO algorithm towards choosing solutions 

with less or zero violation.  

The purpose of removing VH is to see how LAPSO performs based on only the operations of min-

max heuristic and PSO technique. For evaluation and selection of solutions, only Equation (2) is used. 

The Equation (2), which was proposed in [5], aggregate the six QoS functions, constraints and 

preferences into one objective function. It suffers high violation because violation is not explicitly 

detected by its constraint handling method.  

The LAPSO without VH is shown in Algorithm 2. In the algorithm, line 3 shows the modification, 

where the fitness of a solution 𝑓(𝑥𝑖
𝑡) is computed using Equation (2) only. Detail of LAPSO can be 

found in [6]. 

 

Algorithm 2:  Look Ahead PSO without VH 

1 foreach particle 

2  initialize 𝑥𝑖𝑗
𝑡  and 𝑣𝑖𝑗

𝑡  

3  compute 𝑓(𝑥𝑖
𝑡) using Equation (2) 

4  initialize 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 with 𝑥𝑖

𝑡 

5 compute 𝑔𝐵𝑒𝑠𝑡𝑗
𝑡  

6 while stopping condition not satisfied do        //next iteration 

7  foreach particle 

8   update 𝑣𝑖𝑗
𝑡+1 

9   update 𝑥𝑖𝑗
𝑡+1   

10   compute 𝑓(𝑥𝑖
𝑡) using Equation (2) 

11   update 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡+1 

12  update 𝑔𝐵𝑒𝑠𝑡𝑗
𝑡+1 

13  //decode PSO's previous and current global best particles to schedules  

14  𝜙𝑏𝑒𝑠𝑡
𝑡  = 𝑔𝐵𝑒𝑠𝑡𝑗

𝑡  

15  𝜙𝑏𝑒𝑠𝑡
𝑡+1 = 𝑔𝐵𝑒𝑠𝑡𝑗

𝑡+1 

16  invoke Algorithm 1 to improve  the schedule 𝜙𝑏𝑒𝑠𝑡
𝑡+1   

17 return 𝜙𝑏𝑒𝑠𝑡
+  

 

4.  Simulation Experiment 

In this section,  a simulation was carried out to evaluate the performance of LAPSO without VH. Results 

were compared with the original LAPSO and the RCPSO algorithms. The algorithms were tested using 

a business workflow application as used in reference [5] and [6]. As in [6], to each of the tasks in the 

workflow, depending on the test case, a medium scale was randomly assigned – in the range 30 to 60 – 

or a large scale – in the range 60 to 120 – set of service instances. The values for the six QoS parameters 

of each service instance were also randomly generated [5], but they followed the rule that for the same 

task the service cost depended on the values of the other parameters. The results were compared with 

respect to Cumulative Violation Rate (CVR). 

4.1.  Results and Discussion 

4.1.1.  Test Case 1: Moderate Constraints. In this experiment, all the user-defined hard constraints, 

including budget, are set to moderate and the grid scale is set to large and then to medium. From the 
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simulation results, the Fig. 1 (a) (large grid scale) and Fig.1(b) (medium grid scale) show performances 

of the schemes.  

 

       

 
 

In Figure 1(a) and (b), the three algorithms have managed to fulfil all the user-defined hard constraints 

with no violation (0% violation). However, LAPSO and LAPSO without VH achieved faster 

convergence than RCPSO. 

4.1.2.  Test Case 2: Tight Constraints. In this experiment, all the user-defined hard constraints, including 

budget, are set to tight and the grid scale is set to large and then to medium. From the simulation results, 

Fig. 2c (large grid scale) and Fig. 2d (medium grid scale) show performances of the schemes.  

 

     

 
 

In Figure 2(c) and Figure 2(d), LAPSO has managed to achieve 0% violation in both large and 

medium scale cases. LAPSO-without-VH recorded 12.72% and 16% mean CVR, in Fig. 2(c) and (d), 

respectively. Lastly, RCPSO suffered violations of 20.4% and 20.55% mean CVR for the large and 

medium scales, respectively. 

From the above results, it can be observed that: firstly, LAPSO without VH still outperforms the 

benchmark RCPSO algorithm, this is because LAPSO uses deterministic strategy in improving global 

best solution, while RCPSO uses stochastic methods; secondly, the original LAPSO is by far better than 

both LAPSO without VH and RCPSO. This is because the LAPSO without VH uses the RCPSO’s 

fitness model, which leads PSO search towards solutions with relatively high violation, making it more 

difficult for min-max method, in LAPSO, to perform effectively. 
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Fig. 1: (a) Violation Rate under moderate constraints and large grid scale (b) Violation Rate 

under moderate constraints and medium grid scale 

Fig. 2. (a) Violation Rate under tight constraints and large grid scale (b) Violation Rate under tight 

constraints and large grid scale 
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5.  Conclusion 

In this paper further analysis of the LAPSO algorithm is presented. In LAPSO dual functions are used 

for violation handling and multi-objective optimisation. For optimization of the multiple objectives, 

PSO is used as baseline and a min-max based method is used for deterministic search. Previous 

simulation results indicated that LAPSO significantly minimizes violation of user constraints even in 

tight cases – when user demands are high. In this study, LAPSO is examined without its violation 

handling method in order to reveal the effectiveness of the synergy of its components. The results show 

that LAPSO, based on RCPSO’s scheduling model and the min-max method, still outperforms the 

benchmark, even though the LAPSO with its violation handling method performed far better.  
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