
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012120 doi:10.1088/1757-899X/226/1/012120

Optimizing Multiple QoS for Workflow Applications using

PSO and Min-Max Strategy

Faruku Umar Ambursa1*, Rohaya Latip1,2, Azizol Abdullah1, Shamala

Subramaniam1

1Communication Technology and Network Department, Faculty of Computer Science

and Information Technology, Universiti Putra Malaysia.

2Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia.

*Corresponding author: fuambursa@gmail.com

Abstract. Workflow scheduling under multiple QoS constraints is a complicated optimization

problem. Metaheuristic techniques are excellent approaches used in dealing with such problem.

Many metaheuristic based algorithms have been proposed, that considers various economic and

trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-

defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization

(PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve

performance in such situations. LAPSO algorithm is designed based on synergy between a

violation handling method and a hybrid of PSO and min-max heuristic. Simulation results

showed a great potential of LAPSO algorithm to handling user requirements even in tight

situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the

impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved

by removing the violation handling from the operation of the algorithm. The results show that

LAPSO based on only the min-max method still outperforms the benchmark, even though the

LAPSO with the violation handling performs more significantly better.

Keywords: Service-orientated Computing; Workflow application; Scheduling; multiple QoS;

Particle Swarm Optimisation (PSO).

1. Introduction

Workflow Management Systems (WFMSs) enable seamless binding of computing infrastructures from

geographically distributed service domains. The primary aim of a QoS-aware WFMS is to provide

transparent and efficient access to these distributed services as well as provide the needed QoS

satisfaction to EUs with diverse QoS requirements. The delivery of QoS is a challenging task due to the

heterogeneous and dynamic nature of the service platforms. In addition, large number of service

providers exists in the web market, each with different economic and social attributes. Therefore,

efficient workflow scheduling strategies are needed to provide the needed level of QoS satisfaction.

To address this demand, numerous researches have been reported in literature [1]–[8]. These

researches have been categorized based on: the number of user QoS objectives considered in scheduling

model; the method for handling user constraints and preferences; and the kind of optimization strategy

employed [6]. The schemes proposed in [4], [5] and [6] supported six user objectives, constraints and

2

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012120 doi:10.1088/1757-899X/226/1/012120

preferences. However, economic cost is not considered in [4]. The scheduling model in [5] took into

account the user parameters that included time, cost, reliability, availability, security and reputation,

which were aggregated into single objective function using weighted sum approach. The authors

proposed a rotary chaotic PSO (RCPSO) algorithm to optimize the multi-objective function for high

quality scheduling solutions. The RCPSO hybridized chaos method and PSO optimization technique.

However, it results to high violation of user-defined constraints in tight situations. To address this

problem, recently a new scheme is proposed in [6] that enhanced both the scheduling model and

optimization method of RCPSO. The new scheduling model is based on dual function approach, where

a function for violation detection is incorporated in addition to the RCPSO’s fitness function for better

violation handling. Then a Look-ahead PSO (LAPSO) optimization algorithm is proposed, which

integrated a min-max heuristic in PSO. The idea of the optimization approach was to use a deterministic

guided approach for PSO-based solution search. Simulation results showed a great potential of LAPSO

algorithm to handling user requirements even in tight situations. In this paper, the performance of the

algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the

algorithm is revealed. This is achieved by removing the violation handling from the operation of the

algorithm. The results show that LAPSO based on only the min-max method still significantly

outperform the benchmark, even though the LAPSO with the violation handling performed far better.

2. The LAPSO Algorithm

In this section, the overview of LAPSO Algorithm is explained. LAPSO algorithm is based on the

interaction between two important components: constraint handling algorithm and hybrid metaheuristic

optimization algorithm. These components are described in detail in the following subsections.

2.1. Violation handling Algorithm

A multi-QoS constraint handling algorithm is proposed to minimize constraints violations. The purpose

of the algorithm is to aid in selecting good scheduling solutions from the pool of solutions produced by

PSO. The algorithm is based on the introduced scheduling model with dual functions: the violation

function 𝜆𝜙 and objective function 𝒲𝜙. These models are defined in Equation (1) and Equation (2) for

evaluation and selection of solutions. The violation function tracks cumulative violation levels of

scheduling solutions with the aim of meeting user hard requirements. The objective function computes

the aggregate value of the multiple objective functions. It evaluates solutions based on their cumulative

achievement for the optimization of user soft requirements. More details of the selection algorithm can

be found in [6].

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜆𝜙 = δ𝜋𝑑𝑙𝑛
+ δ𝜋𝑏𝑔𝑡

+ δ𝜋𝑟𝑒𝑙
+ δ𝜋𝑎𝑣𝑙

+ δ𝜋𝑠𝑒𝑐
+ δ𝜋𝑟𝑒𝑝

𝑠. 𝑡 𝜆𝜙 = 0. (1)

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒲𝜙 = 𝓌1 (1 −
𝑀𝜙

𝒟
) + 𝓌2 (1 −

𝐶𝜙

ℬ
) + 𝓌3 (

𝑅𝜙

ℛ
− 1) + 𝓌4 (

𝐴𝜙

𝒜
− 1) +

𝓌5 (
𝑆𝑒𝑐𝜙

𝒮
− 1) + 𝓌6 (

𝑅𝑒𝑝𝜙

Ɽ
− 1) (2)

2.2. Hybrid PSO and Min-Max

LAPSO algorithm is based on PSO algorithm and min-max heuristic. PSO is a population-based

heuristic strategy for a solution search. It belongs to the class of swarm intelligence and shares similarity

with GA in terms of starting with random solutions [9]. The LAPSO algorithm optimizes scheduling

solution by using PSO as baseline algorithm to iteratively search for and produce good solutions. In

each iteration, the best solution produced by PSO is enhanced using the auxiliary min-max heuristic.

The min-max heuristic improves PSO’s solution by relieving a task randomly assigned to a poor service

and reassigning it to an alternative service that improves its QoS. The min-max also reduces CPU time

by minimizing the number of invalid solutions produced by PSO.

3

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012120 doi:10.1088/1757-899X/226/1/012120

2.3. Particle Updating

PSO’s particle updating stage is the core phase where min-max heuristic is employed in LAPSO. In the

beginning, the algorithm adopted the RD rule and history velocity cancellation methods [5]. Then a task

remapping strategy based on the min-max heuristic is designed to improve the global best solution

(𝑔𝐵𝑒𝑠𝑡) found at the end of each iteration. Firstly, the fitness function is de-aggregated into the multiple

distinct objective functions. In order to improve the global best solution, the idea is to maximise the QoS

dimension that has the minimum normalised QoS value from among all its six QoS dimensions. This is

based on the premise that the quality of each solution is composed of its value with respect to each of

the six QoS objectives. The problem is considered a max-min problem based on the Decision Theory

and is expressed as:

max [min (𝒲𝜙
𝑚, 𝒲𝜙

𝑐 , 𝒲𝜙
𝑟 , 𝒲𝜙

𝑎 , 𝒲𝜙
𝑠 , 𝒲𝜙

𝑟𝑒𝑝
)] (3)

A task remapping algorithm called Look-ahead QoS-aware Task-Remapping Algorithm (LATR)

(Algorithm 1) is designed based on min-max heuristic. The whole idea of this approach is that

maximising the inferior mapping string results to maximisation of the inferior parameter, which in turn

improves the quality of the entire solution. The operation of the algorithm is detailed in [6].

Algorithm 1: Look-ahead QoS-aware Task-Remapping Algorithm (LATR) [6]

 Input: 𝜙𝑏𝑒𝑠𝑡
𝑡

 Output: 𝜙𝑏𝑒𝑠𝑡
+

1 𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 ← 𝑆𝑒𝑎𝑟𝑐ℎ()𝑄𝑜𝑆𝑆𝑒𝑡𝑏𝑒𝑠𝑡

2 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 ← 𝑆𝑒𝑎𝑟𝑐ℎ(𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)𝑀𝑎𝑝𝑆𝑒𝑡𝑏𝑒𝑠𝑡

3 counter ← 1 //first attempt to improve 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟

4 𝜙𝑑𝑒𝑡𝑒𝑟𝑚 ← 𝜙𝑏𝑒𝑠𝑡
𝑡−1

5 𝛷г

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 ← 𝑆𝑒𝑎𝑟𝑐ℎ(𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)𝑀𝑎𝑝𝑆𝑒𝑡𝑑𝑒𝑡𝑒𝑟𝑚

6 If 𝛷г

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 > 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟
 then

7 𝐴𝑆 ← 𝑠г
ℎ

8 temp ← copy of 𝜙𝑏𝑒𝑠𝑡
𝑡

9 𝑡𝑒𝑚𝑝 ← 𝑅𝑒𝑚𝑎𝑝(ℎ, 𝐴𝑆)

10 Calculate 𝜆𝑡𝑒𝑚𝑝 using Equation (1)

11 If 𝜆𝑏𝑒𝑠𝑡 = 0 then //best solution is feasible

12 If 𝜆𝑡𝑒𝑚𝑝 = 0 then

13 Calculate 𝒲𝑡𝑒𝑚𝑝 using Equation (2)

14 If 𝒲𝑡𝑒𝑚𝑝 > 𝒲𝑏𝑒𝑠𝑡 then

15 𝜙𝑏𝑒𝑠𝑡
+ ← 𝑅𝑒𝑚𝑎𝑝(ℎ, 𝐴𝑆)

16 Else //𝜆𝑏𝑒𝑠𝑡 > 0 (best is infeasible)

17 If 𝜆𝑡𝑒𝑚𝑝 < 𝜆𝑏𝑒𝑠𝑡 then

18 𝜙𝑏𝑒𝑠𝑡
+ ← 𝑅𝑒𝑚𝑎𝑝(ℎ, 𝐴𝑆)

19 Else

20 If counter ← 1 then

21 counter ++ //second attempt to improve 𝛷ғ

𝜎𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟

22 𝜙𝑑𝑒𝑡𝑒𝑟𝑚 ← 𝑟𝑎𝑛𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑆𝑂 𝑠𝑤𝑎𝑟𝑚)
23 Go to line 5

24 Return 𝜙𝑏𝑒𝑠𝑡
+

3. LAPSO Algorithm without Violation Handling (VH)

4

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012120 doi:10.1088/1757-899X/226/1/012120

In this section, the LAPSO algorithm without VH is highlighted. LAPSO without VH means removing

Equation (1) in the operations of LAPSO. The equation is responsible for detecting the presence of

violation of user requirements in scheduling solutions, which has significant influence in the

performance of LAPSO. This is because it directs the LAPSO algorithm towards choosing solutions

with less or zero violation.

The purpose of removing VH is to see how LAPSO performs based on only the operations of min-

max heuristic and PSO technique. For evaluation and selection of solutions, only Equation (2) is used.

The Equation (2), which was proposed in [5], aggregate the six QoS functions, constraints and

preferences into one objective function. It suffers high violation because violation is not explicitly

detected by its constraint handling method.

The LAPSO without VH is shown in Algorithm 2. In the algorithm, line 3 shows the modification,

where the fitness of a solution 𝑓(𝑥𝑖
𝑡) is computed using Equation (2) only. Detail of LAPSO can be

found in [6].

Algorithm 2: Look Ahead PSO without VH

1 foreach particle

2 initialize 𝑥𝑖𝑗
𝑡 and 𝑣𝑖𝑗

𝑡

3 compute 𝑓(𝑥𝑖
𝑡) using Equation (2)

4 initialize 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡 with 𝑥𝑖

𝑡

5 compute 𝑔𝐵𝑒𝑠𝑡𝑗
𝑡

6 while stopping condition not satisfied do //next iteration

7 foreach particle

8 update 𝑣𝑖𝑗
𝑡+1

9 update 𝑥𝑖𝑗
𝑡+1

10 compute 𝑓(𝑥𝑖
𝑡) using Equation (2)

11 update 𝑝𝐵𝑒𝑠𝑡𝑖
𝑡+1

12 update 𝑔𝐵𝑒𝑠𝑡𝑗
𝑡+1

13 //decode PSO's previous and current global best particles to schedules

14 𝜙𝑏𝑒𝑠𝑡
𝑡 = 𝑔𝐵𝑒𝑠𝑡𝑗

𝑡

15 𝜙𝑏𝑒𝑠𝑡
𝑡+1 = 𝑔𝐵𝑒𝑠𝑡𝑗

𝑡+1

16 invoke Algorithm 1 to improve the schedule 𝜙𝑏𝑒𝑠𝑡
𝑡+1

17 return 𝜙𝑏𝑒𝑠𝑡
+

4. Simulation Experiment

In this section, a simulation was carried out to evaluate the performance of LAPSO without VH. Results

were compared with the original LAPSO and the RCPSO algorithms. The algorithms were tested using

a business workflow application as used in reference [5] and [6]. As in [6], to each of the tasks in the

workflow, depending on the test case, a medium scale was randomly assigned – in the range 30 to 60 –

or a large scale – in the range 60 to 120 – set of service instances. The values for the six QoS parameters

of each service instance were also randomly generated [5], but they followed the rule that for the same

task the service cost depended on the values of the other parameters. The results were compared with

respect to Cumulative Violation Rate (CVR).

4.1. Results and Discussion

4.1.1. Test Case 1: Moderate Constraints. In this experiment, all the user-defined hard constraints,

including budget, are set to moderate and the grid scale is set to large and then to medium. From the

5

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012120 doi:10.1088/1757-899X/226/1/012120

simulation results, the Fig. 1 (a) (large grid scale) and Fig.1(b) (medium grid scale) show performances

of the schemes.

In Figure 1(a) and (b), the three algorithms have managed to fulfil all the user-defined hard constraints

with no violation (0% violation). However, LAPSO and LAPSO without VH achieved faster

convergence than RCPSO.

4.1.2. Test Case 2: Tight Constraints. In this experiment, all the user-defined hard constraints, including

budget, are set to tight and the grid scale is set to large and then to medium. From the simulation results,

Fig. 2c (large grid scale) and Fig. 2d (medium grid scale) show performances of the schemes.

In Figure 2(c) and Figure 2(d), LAPSO has managed to achieve 0% violation in both large and

medium scale cases. LAPSO-without-VH recorded 12.72% and 16% mean CVR, in Fig. 2(c) and (d),

respectively. Lastly, RCPSO suffered violations of 20.4% and 20.55% mean CVR for the large and

medium scales, respectively.

From the above results, it can be observed that: firstly, LAPSO without VH still outperforms the

benchmark RCPSO algorithm, this is because LAPSO uses deterministic strategy in improving global

best solution, while RCPSO uses stochastic methods; secondly, the original LAPSO is by far better than

both LAPSO without VH and RCPSO. This is because the LAPSO without VH uses the RCPSO’s

fitness model, which leads PSO search towards solutions with relatively high violation, making it more

difficult for min-max method, in LAPSO, to perform effectively.

0

20

40

0 5000 10000

M
e

an
 C

V
R

 (
%

)

Iterations

a

LAPSO

RCPSO
0

20

40

0 5000 10000

M
e

an
 C

V
R

 (
%

)

Iterations

b

LAPSO

RCPSO

0

20

40

60

0 5000 10000M
e

an
 C

V
R

 (
%

)

Iterations

a
LAPSO

0

20

40

60

0 5000 10000M
e

an
 C

V
R

 (
%

)

Iterations

b
LAPSO

Fig. 1: (a) Violation Rate under moderate constraints and large grid scale (b) Violation Rate

under moderate constraints and medium grid scale

Fig. 2. (a) Violation Rate under tight constraints and large grid scale (b) Violation Rate under tight

constraints and large grid scale

6

1234567890

International Research and Innovation Summit (IRIS2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 226 (2017) 012120 doi:10.1088/1757-899X/226/1/012120

5. Conclusion

In this paper further analysis of the LAPSO algorithm is presented. In LAPSO dual functions are used

for violation handling and multi-objective optimisation. For optimization of the multiple objectives,

PSO is used as baseline and a min-max based method is used for deterministic search. Previous

simulation results indicated that LAPSO significantly minimizes violation of user constraints even in

tight cases – when user demands are high. In this study, LAPSO is examined without its violation

handling method in order to reveal the effectiveness of the synergy of its components. The results show

that LAPSO, based on RCPSO’s scheduling model and the min-max method, still outperforms the

benchmark, even though the LAPSO with its violation handling method performed far better.

References

[1] R. Aron, I. Chana, and A. Abraham, “A hyper-heuristic approach for resource provisioning-

based scheduling in grid environment,” J. Supercomput., pp. 1427–1450, 2015.

[2] H. Khajemohammadi, A. Fanian, and T. A. Gulliver, “Efficient Workflow Scheduling for Grid

Computing Using a Leveled Multi-objective Genetic Algorithm,” J. Grid Comput., vol. 12,

no. 4, pp. 637–663, Aug. 2014.

[3] K. Kianfar, G. Moslehi, and R. Yahyapour, “A novel metaheuristic algorithm and utility

function for QoS based scheduling in user-centric grid systems,” J. Supercomput., vol. 71, no.

3, pp. 1143–1162, 2015.

[4] A. A. Pourhaji Kazem, H. Pedram, and H. Abolhassani, “BNQM: A Bayesian Network based

QoS Model for Grid service composition,” Expert Syst. Appl., vol. 42, no. 20, pp. 6828–6843,

2015.

[5] Q. Tao, H. Y. Chang, Y. Yi, C. Q. Gu, and W. J. Li, “A rotary chaotic PSO algorithm for

trustworthy scheduling of a grid workflow,” Comput. Oper. Res., vol. 38, no. 5, pp. 824–836,

May 2011.

[6] F. U. Ambursa, R. Latip, A. Abdullah, and S. Subramaniam, “A particle swarm optimization

and min–max-based workflow scheduling algorithm with QoS satisfaction for service-oriented

grids,” J. Supercomput., 2016.

[7] M. Wang, L. Zhu, and K. Ramamohanarao, “Reasoning task dependencies for robust service

selection in data intensive workflows,” Computing, vol. 97, no. 4, pp. 337–355, Dec. 2015.

[8] X. Wang, C. C. S. Yeo, R. Buyya, and J. Su, “Optimizing the makespan and reliability for

workflow applications with reputation and a look-ahead genetic algorithm,” Futur. Gener.

Comput. Syst., vol. 27, no. 8, pp. 1124–1134, Oct. 2011.

[9] F. U. Ambursa and R. Latip, “A survey: Particle swarm optimization-based algorithms for grid

computing scheduling systems,” J. Comput. Sci., vol. 9, no. 12, pp. 1669–1679, 2013.

