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Abstract. In the recent years, the coupled finite element-element free Galerkin method 

(coupled FE-EFGM) has found wide application in modeling large elasto-plastic deformations 

in bi-material components. The coupled FE-EFGM applies EFGM in the portion of the domain 

where large deformations are expected to occur, whereas the rest of the domain is discretized 

into conventional finite elements. The large deformation occurring in the domain has been 

modeled by using the total Lagrangian approach. The non-linear elasto-plastic behavior of the 

material has been represented by the Ramberg-Osgood model. Finally, two numerical problems 

are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in 

modeling large elasto-plastic deformations in bi-material samples. 
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1.  Introduction 
The modeling of large deformation in engineering components containing internal material interfaces 

is very difficult in the conventional finite element method (FEM) because of the need for mesh 

adaption and conformal meshing [1-3]. The enriched techniques like the coupled FE-EFGM model 

different types of internal discontinuities independent of the mesh or the grid. FEM faces extreme 

mesh distortion issues while modeling large elasto-plastic deformations in engineering components 

due to which the remeshing of domain is required time and again during simulation [4-6]. The coupled 

FE-EFGM couples the two techniques together and provides a strong numerical tool that exploits the 

advantages of both FEM and EFGM. The coupled FE-EFGM proves to be a very efficient numerical 

tool for modeling large elasto-plastic deformations in bi-material engineering components, where large 
deformations are confined to a portion of the specimen only. EFGM [7-10] is used to discretize the 

portion of the domain where large elasto-plastic deformations are expected to occur whereas the 

conventional FEM is used in the rest of the domain. The coupled FE-EFGM proves to a very efficient 

numerical tool for modeling large elasto-plastic deformations in bi-material engineering specimens. 

The coupled FE-EFGM was successfully applied for the direct imposition of essential boundary 
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conditions by Krongauz and Belytschko [11]. Several techniques have been proposed for appropriate 

coupling between FEM and EFGM [12-13]. The coupled FE-EFGM has been successfully applied to 

model some simple elastic problems and a few elasto-plastic crack growth problems [14]. 
The present study models large elasto-plastic deformations in bi-material engineering components 

by employing the coupled FE-EFGM. The large deformation occurring in the domain has been 

modeled by the total Lagrangian approach. The nonlinear material behavior has been characterized by 
the generalized Ramberg-Osgood model. The stresses have been computed by employing the elastic-

predictor and plastic-corrector algorithm [15]. The plasticity has been modeled by applying the Von-

Mises failure criterion with isotropic strain hardening. The discontinuities present in the domain have 

been represented by the level set method. Finally, the proposed technique has been used to solve large 

elasto-plastic deformations in bi-material engineering components subjected to different type of loads. 

2.  Modeling of Large Deformation 

When a body undergoes large deformations, its geometry changes continuously during analysis and 

the body takes definite configuration after the application of each load step. The deformation of a body 

is completely defined by the deformation gradient, which relates the deformed state of a particular 

body with its undeformed state. The deformation gradient (�) giving the relationship between the 

deformed state and the undeformed state can be defined as �� = �. ��, where � denotes the position 

of the point in the deformed configuration and � denotes the coordinates of the point in the deformed 

state. In large deformation analysis, two types of strain measures are extensively used. The first one is 

the Green-Lagrange strain tensor, which describes the change in length with respect to the original 
undeformed length. The second strain measure is the Almansi-Hamel strain tensor, which describes the 

change in length with respect to the current deformed configuration. The Cartesian components of the 

Green strain tensor (	) and the Almansi strain tensor (
) can be written as 

	�� = 
� �������
������ − ����  ;  
�� = 
� ���� − ������

������ �     (1) 

Three types of stress measures are used in large deformation analysis. The first stress measure is 

the Cauchy stress tensor (�), which can be defined as the current force acting on the deformed 

configuration per unit deformed (actual) area. The second stress measure is the first Piola-Kirchhoff 

stress tensor (�), which may be defined as the force acting on the current deformed configuration per 

unit original undeformed area. The third stress measure is the second Piola-Kirchhoff stress tensor (�), 

which is defined as the force acting on the undeformed area per unit undeformed area. 

3.  Total Lagrangian Formulation 

The total Lagrangian approach uses the initial undeformed configuration(��), as the reference 

configuration for analysis. All quantities such as the displacements, stresses and strains are measured 

with respect to �� configuration. The equilibrium equation of a deformable body under the action of 

external forces can be written as   ���!" �#	��$� Ω� −  &�!" �'�� Ω� −  (���)" �'�� Γ�  =0      (2) 

where& represent the body forces, ( represents the applied tractions and ' denotes the unknown 

displacements. All quantities are expressed in terms of initial undeformed configuration. In order to 

develop the numerical model for large deformation analysis, we have to approximate the displacement 
field. The total and incremental displacement fields can be approximated in FEM or EFGM as +(,) = ∑ Ψ�(,)+�/�0
         (3) 

where + = ['2]4, +�denotes the standard degrees of freedom and 5 denotes the number of present in 

the domain. Ψ�represents the interpolation or shape functions. In FEM, Ψ�represents the conventional 

finite element Lagrange shape functions whereas Ψ� represents the MLS shape functions in EFGM. 

The approximate solution can be written in matrix form as 6+7 = [8]697, where 697 = ['�2�]4, 
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[8] = :Ψ� 00 Ψ�<. After making appropriate substitutions in the equilibrium equation, we obtain the 

final numerical model for total Lagrangian approach as [=]697 = 6>7 such that ? =  [@]4[A][@]!" d Ω� +  [D]4[EF][D]!" d Ω�      (4) 

> =  [8]46>7!" d Ω� +  [8]46G7)" d Γ� −  [H]46F7!" d Ω�     (5) [H] = [I][8]      ;     [D] = [IJ ][8]       (6) 6>7 = K>�>LM4    ;      6G7 = KG�GLM4
       (7) 

[D] =
OP
PP
Q R1 + �T��U ��� �V�� ����T�L ��L R1 + �V�LU ��LR1 + �T��U ��L + �T�L ��� R1 + �V�LU ��� + �V�� ��LWX

XX
Y
  ;   [ZJ] =

OP
PP
PP
Q ��� 0

��L 0
0 ���0 ��LWX

XX
XX
Y
  (8) 

6[7 = \����LL��L]4 = [^]6_7       (9) 

6_7 = \	��	LL   2	�L]4 =
ab
c
bd �T�� + 
� R�T��U� + 
� R�V��U�

�V�L + 
� R�T�LU� + 
� R�V�LU�
�V�� + �T�L + �T�� �T�L + �V�� �V�Leb

f
bg

      (10) 

[hi] =  
OP
PP
Q��� ��L��L �LL

0       00       0 0       00      0 ��� ��L��L �LLWX
XX
Y
       (11) 

4.  Coupling Between FEM and EFGM 
The Coupled FE-EFGM employs EFGM in the region where large elasto-plastic deformations occur 

and the rest of the domain is discretized into conventional finite elements. The FE region and EFG 

region are coupled together by introducing interface or transition elements between FE nodes and EFG 

nodes. The whole domain (Ω)is divided into three separate sub-domains like the FE region (ΩFE), the 

EFG region (Ω
EFG) and the transition region (Ω

TE). The displacement approximation in the FEM 

region can be written as '(,) = ∑ N�(,)/�0
 '�         ;          , ∈ Ωlm      (12) 

whereN�(,)denotes the finite element shape functions, 5 the number of nodes and '�the nodal degrees 

of freedom. In the EFGM region, the displacement approximation can be written as '(,) = ∑ ��(,)/�0
 n�(,) = o4(,)p(,) = 8(,)+       ;          , ∈ Ωmlq  (13) 

whereo4(,)  represents a matrix of polynomial basis functions, 5 is the order of the basis function, 

and p(,)denotes a matrix of unknown coefficients. ' 8 ' represents a matrix of MLS shape functions 

used in EFGM and can be written as 8(,) = r4(,)stu(,)H(,)        (14) 

where 

s(,) = v w�(,x
�0
 )r(,�)r4#,�$       (15) 

H(,) = [w
(,)r(,
),   w�(,)r(,�), … … … , wx(,)r(,x)]    (16) 

The displacement approximation across the transition element is obtained by employing the Ramp 
function. The displacement approximation across the transition element can be written as '(,) = [1 − {(,)]+|}(,) + {(,)+}|~(,)      (17) 
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where{(,) is the Ramp function which varies linearly from zero at the finite element boundary to one 

at the meshfree boundary. +|}denotes the FEM approximation and +}|~represents the EFGM 

approximation. For numerical calculations, the Ramp function can be obtained as {(,) = ∑ N�(,)/��0
         (18) 

where, /�denotes the number of nodes lying on the meshfree boundary of the interface or transition 

element. Now, the displacement approximation for transition elements can be written as +(,) = ∑ �� �(,)+�/_�0
         (19) 

where, �� � denotes the shape functions for interface elements, which can be written as 

�� �(,) = �[1 − {(,)]��(,) + {(,)��(,)     ;     , ∈ Ω�m
{(,)��(,)                                          ;     , ∉  Ω�m�    (20) 

5.  Numerical Results and Discussions 

Now, we present two numerical problems involving large elasto-plastic deformations in bi-material 
specimens that were solved by coupled FE-EFGM. The total Lagrangian approach has been used to 

model the large deformations occurring in the domain. The grid size of 26×41 nodes has been 

considered for analysis. The coupled FE-EFG method provides an efficient numerical tool for 

modeling large deformation in bi-material samples, where large deformations are confined to the weak 

portion of the specimen only. The weaker portion of the domain is analyzed by EFGM, whereas the 

remaining portion of the domain is discretized into conventional finite elements. Thus, we are able to 

take advantage of both the numerical techniques. The results obtained by the coupled FE-EFGM are 

compared with XFEM and EFGM results, which have been taken as the reference solution for the 

given problems. 

5.1.  Large Deformation with Horizontal Bi-material Interface 

The large elasto-plastic deformation in a rectangular component with a horizontal bi-material interface 

is presented here. A rectangular plate (4 �� × 6 ��)is fixed at the top edge and a uniform 

compaction displacement of 1 �� height reduction is imposed at the bottom edge, as shown in Fig. 1. 

The weaker portion of the specimen is assumed to exhibit the elasto-plastic behavior with the Young’s 

modulus of 2.1 × 10
��/��, Poisson’s ratio of 0.35, yield stress of 2.4 × 10��/��and a hardening 

parameter of 3.0 × 10��/��. The stronger portion of the domain is assumed remain elastic during 

simulation, with the Young’s modulus of 2.1 × 10

�/��, Poisson’s ratio of 0.35. The domain 

representation of the given bi-material sample in coupled FE-EFGM is shown in Fig. 2(a). The 

deformed configuration corresponding to the compaction of 1 �� is shown in Fig. 2(b).  The 

variations of the normal stresses along the bi-material interface and the bottom edge are shown in Fig. 

3. The results show that the proposed numerical technique can be efficiently and accurately applied to 
solve large elasto-plastic deformations in different engineering components containing bi-material 

interfaces. The results obtained by the coupled FE-EFGM show a remarkable agreement with the 

results obtained by XFEM and EFGM.  

5.2.  Large Deformation with Two Horizontal Bi-material Interfaces 

The large elasto-plastic deformation in a rectangular component  (4 �� × 6 ��)  with two horizontal 

bi-material interfaces is presented here. The plate is fixed at the top edge and a uniform compaction 

displacement of 7.5 �� is imposed at the bottom edge, as shown in Fig. 1. The material properties of 

the weaker and stronger portion are assumed to be the same as in the previous case. The domain 

representation of the given rectangular specimen with two bi-material interfaces is shown in Fig. 4(a). 

The deformed configuration corresponding to the compaction of  7.5 �� is shown in Fig. 4(b).  The 

variations of the normal stresses along the bi-material interface and bottom edge are shown in Fig. 5. 
The coupled FE-EFGM provides a better framework for modeling large deformation problems, 

because it utilizes the advantages of both FEM and EFGM during simulation. 
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Fig. 1: Rectangular component with bi-material interfaces. 

 
Fig. 2: Rectangular component with one bi-material interface. (a) Domain representation (b) Deformed 

shape 

 

Fig. 3: Variation of Normal stress (a) Along bi-material interface (b) Along bottom edge. 
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Fig. 4: Rectangular component with two bi-material interfaces. (a) Domain representation (b) 
Deformed shape. 

 

Fig. 5: Variation of Normal stress (a) Along bi-material interface(b) Along bottom edge. 

6.  Conclusions 
The present work employs coupled FE-EFGM for modeling large elasto-plastic deformations in bi-

material engineering components. The coupled FE-EFGM exploits the advantages of both FEM and 

EFGM and provides a strong numerical tool for modeling large elasto-plastic deformations in bi-
material specimens, where large deformations are confined to a portion of the domain only. The results 

obtained by coupled FE-EFGM show a remarkable agreement with the results obtained by XFEM and 

EFGM. The results also show the capabilities of the coupled FE-EFGM in modeling large elasto-
plastic deformations in bi-material engineering components. 
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