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Abstract: A study on finite element (FE) modelingof fiber-reinforced polymer (FRP)-confined 

normal-strength and high-strength concrete (NSC and HSC) based on an extended concrete 

damage-plasticity approach is presented. The study focuses on the extension ofLubliner’s model by 

accurately incorporating the effects of confinement level, concrete strength, and nonlinear dilation 

behavior of FRP-confined concrete. Failure surface and flow rule were established using an up-to-date 

database. In order to validate the extended damage-plasticity model, the predictions of the FE modeling 

are compared with the experimental results. These comparisons indicate that the extended approach 

accurately predicts the compressive behavior of FRP-confined NSC and HSC.  
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I. INTRODUCTION 

Fiber-reinforced polymer (FRP) composites have recently been widely used for confinement of 

concrete [1]-[8]. It is now well understood that the compressive strength and ductility of concrete are 

enhanced by its lateral confinement. In order to evaluate the mechanical properties of FRP-confined 

concrete, a large number of studies have been conducted and over 100 stress-strain models have been 

developed [9]. 

Finite element (FE) method has been extensively used as a powerful tool to accurately model the 

behavior of confined concrete. However, a relatively few number of research studies have been 

reported to date on FE modeling of FRP-confined concrete (e.g. [10]-[12]). Furthermore, most of the 

existing models are based on actively confined concrete and adopt an approach that has recently been 

experimentally shown to be inaccurate, especially for HSC [13]. Therefore, there is a need for an 

accurate FE model that is applicable to both FRP-confined NSC and HSC.  

In this study, a constitutive model for FRP-confined concrete based on an accurate non-associative 

flow rule and hardening/softening rule is proposed for NSC and HSC with circular sections. The model 

uses a failure surface and flow rule that are carefully established based on an up-to-date test database. 

The modeling is implemented in a finite element program ABAQUS [14] for the prediction of 

mechanical behavior. 

II. EXPERIMENTAL DATABASE 

An extensive review of the literature was performed to assemble the database of FRP-confined NSC 

and HSC. Specimens containing internal steel reinforcement or partial FRP confinement were not 

included in the database and only monotonically loaded circular specimens with unidirectional fibers 

orientated in the hoop direction and an aspect ratio (H/D) of less than three were considered in the 
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database. As a result, the database contained 1156 datasets collected from 108 experimental studies 

[13],[15]-[18]. 

III. EXTENDED DAMAGE-PLASTICITY MODEL 

Different theories have been proposed for constitutive modeling of concrete. The main characteristic 

of plasticity models is a plasticity yield surface that includes pressure sensitivity, path sensitivity, 

non-associative flow rule, and strain hardening, without addressing the degradation of the material 

stiffness due to micro-cracking [10]. Furthermore, concrete-damage theory only considers degradation 

of the material stiffness without addressing the irreversible deformations and inelastic volumetric 

expansion in compression [19]. On the other hand, concrete damage-plasticity model considers both 

benefits of plasticity and damage models. Therefore, the concrete damage-plasticity model that was 

proposed by Lubliner et al. [20] and later modified by Lee and Fenves [21] is adopted and extended in 

the present study.  

The original model proposed by Lubliner et al. [20] considers linear trendline for the compression 

and tensile meridians. However, it is evident from the experimental results that compression and 

tensile meridians are curve-shape [22], [23]. Equation(1) is proposed in this study for parameter α, 

which is used in the failure criterion [20], to define the curve-shape compression and tensile meridians: 
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whereγ is dimensionless constant and k1 is the enhancement ratio of axial compressive stress (f
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A confining pressure gradient (i.e. ∆fl= f
*

l – fl, in which fl is a variable confining pressure for 

FRP-confinement) proposed by Lim and Ozbakkaloglu [13], which is defined as 0.13�′��
�.�./��.�01�, 

is used to apply the axial stress difference between FRP-confined and actively confined concrete.  

In order to relate the dilation behavior from test results to the flow rule of the extended model, 

plastic dilation angle (ψ) is related to the plastic strains as following [12]: 

2*34 = − ��56",8	�56 ,8�
��56",8�56 ,8�  (3) 

whereεc,p and εl,p are plastic axial and lateral strains, respectively. Equation(4) is used for establishing 

the relationship between the axial strain and lateral strain of concrete.  

1� = 6 

9:;�	; < 
=:<"#>

?
>

�
?

+ 0.041��.A ;1 + 21 
 � 
�!"#

��.B> (4) 

where CD, εco, and n are the initial Poisson’s ratio of concrete, the axial strain corresponding to f’co, and 

the curve shape parameter, respectively. ��in (4) is variable by gradually increasing the lateral strain 

(εl) until the hoop rupture strain of FRP jacket (εh,rup). The lateral pressure corresponds to εh,rup is 

defined as flu,a. εh,rup can also be predicted using (5) proposed by Lim and Ozbakkaloglu [16]. 

1E,FGH = �0.9 − 2.3�′�� × 10�� − 0.75L� × 10�+�1� (5) 

Therefore, the effects of the confinement level, concrete strength, and nonlinear dilation behavior on 
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the flow rule were considered through (4) and (5) adopted in this study.  

IV. MODELING PREDICTIONS AND COMPARISON WITH EXPERIMENTAL RESULTS 

The predictions obtained from FE analysis based on the extended constitutive model are compared 

with the experimental results of FRP-confined NSC and HSC. Two groups of specimens (i.e. U40 and 

U80) have been used to validate the extended model. Figs. 1 and 2 show the axial stress-strain, 

lateral-axial strain, plastic volumetric strain-axial plastic strain, and plastic dilation angle-axial plastic 

strain relationships of the specimens with the characteristics summarized in Table 1. 

Table.1 Summary of test results used in Figs. 1 and 2 

Group 

ID 
Study 

Dimensions of 

cylinder (mm) 
Lateral confinement 

flu,a 

(MPa) 

f’co 

(MPa) 

U40 Berthet et al. [25] ø160 × 320 
1, 2, 4, 9, 12 layers 

of Carbon-FRP 

3.3, 5.1, 11.7, 

28.3, 37.9 
40.1 

U80 
Ozbakkaloglu and 

Vincent [26] 
ø100 × 200 

1, 3, 4 layers of 

Aramid-FRP 

10.4, 24.1, 

30.1 

37.0, 85.9, 

110.1 

 

 

 
 

(a)                   (b) 

 
(c)                                                                           (d) 

Fig. 1. Variation of: (a) axial stress-axial strain;(b) lateralstrain-axial strain; (c) plastic volumetric 

strain-axial plastic strain; and (d) plastic dilation angle-axial plastic strain relationships with level of 

confinement and concrete strength (Group U40) 

Figs. 1(a) and 2(a), 1(b) and 2(b), and 1(c) and 2(c) respectively show that the proposed model 

closely predicts the axial stress-strain, lateral strain-axial strain, and plastic volumetric strain-axial 

plastic strain behaviors of both NSC and HSC specimens. Figs. 1(d) and 2(d) show the plastic dilation 

angle-axial plastic strain relationships for FRP-confined concrete under different levels of 

confinement. It is evident from the figures that the plastic dilation angle becomes positive after 

inelastic densification. This behavior corresponds to the contraction to expansion in Figs. 1(c) and 

2(c). The accurate estimation of the plastic dilation angle leads to the accurate prediction of the dilation 

behavior of confined concrete as seen in Figs. 1(c) and 2(c). The accuracy of the model was achieved 
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by the use of accurate hardening/softening flow rules, which were established based on the level of 

confining pressure, and incorporation of the effect of the f’co into the modeling of the failure surface. 

 
 

(a)                   (b) 

 
 

(c)                                                                           (d) 

Fig. 2. Variation of: (a) axial stress-axial strain;(b) lateral strain-axial strain; (c) plastic volumetric 

strain-axial plastic strain; and (d) plastic dilation angle-axial plastic strain relationships with level of 

confinement and concrete strength (Group 80) 

 

V. CONCLUSIONS 

This paper has presented the results of a study on FE modeling of FRP-confined concrete in circular 

sections based on an extended constitutive model. An existing concrete damage-plasticity model was 

extendedby makingimprovements tothe failure surface and flow rules throughthe incorporation of the 

influences of confinement level, concrete strength, and nonlinear dilation behavior. Comparisons with 

the experimental results show that the predictions of the extended model are in good agreement with 

the test results of FRP-confined NSC and HSC. 
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