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Abstract. The primary aim of the present work is to calculate and compare the response of 

composite plate using first order and higher order shear deformation theories. The present 

study initially attempts to develop a finite element formulation for handling the analysis of 

laminated composite plates. The current study elaborately discusses the formulation that makes 

an easy programming even for a beginner in this field. Presently, mathematical formulation and 

Matlab coding using First Order Shear Deformation Theory (FSDT) and Higher Order Shear 

Deformation Theory (HSDT) had done. Results obtained were compared with the available 

literature. Parametric study also conducted to clearly understand the variation in results 

obtained from both FSDT and HSDT. 

1. Introduction 

Plates form an essential part of many aerospace, marine, and automobile structures. Aircraft and 

spacecraft structures consist of a large number of flat and curved panel type structural elements. 

Increased usage of composite laminated plates in crucial structures demands the development of 
precise theoretical models to predict their response. Plates may be classified into three groups 

according to the ratio of length/thickness as thick, moderately thick, and thin plates. The behaviour of 

thin plate structures has been the subject of a number of investigations. The above classification is, of 
course, conditional because the reference of the plate to one or another group depends on the accuracy 

of analysis, type of loading, boundary conditions, etc. Thus due to some reason the behaviour of plate 

response may vary as small deflection or large deflection. The large deflection theory assumes that the 
deflections are sufficiently large (they can be comparable with the plate thickness or larger), but they 

should remain small relative to the other dimensions of the plate (except for its thickness). It should be 

also noted that the deflections of the plate are not assumed to be small, compared with its thickness, 
but at the same time still sufficiently small to justify an application of the simplified formulas for the 

plate curvatures. Finally, the large deflection theory deals with finite deflections. However, the relative 

deformations (strains) are assumed to be small quantities. 
Different materials can be combined on a microscopic scale, such as in alloying of metals to 

form plate like structures, but the resulting material is, for all practical purposes, macroscopically 

homogeneous, i.e. the components cannot be distinguished by the naked eye and essentially acts 
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together. The word composite in the term of composite material signifies two or more materials are 

combined on a macroscopic scale to form useful third material. The benefit of composite materials is 

that, if properly designed, they generally show the best qualities of their components or constituents 
and frequently certain qualities that neither constituent owns. Also, in many cases, use of composites 

is more efficient. For example, in aircraft industry, most of the research work is to look for the ways to 

lower the overall weight of the aircraft without reducing the stiffness and strength of its components. 
In the past few decades, astonishing advances in sciences and technology have motivated researches to 

work on new structural materials. The development of composite materials has improved the 

performance and reliability of structural system. Aerospace structure engineering application requires 

an accurate prediction of system behavior of structure made up of composites. In the context of 

optimum design of aircraft components, it is necessary to have a fundamental understanding of their 

deformation characteristics. In the present work, bending behavior of laminated composite plates will 

be studied using first and higher order shear deformation theories in detail. The primary aim of the 

present study is to make a suitable solution technique with finite element method for bending analysis 

of a laminated composite plate using FSDT and HSDT and find out the variation in results obtained 
from both FSDT and HSDT. The important goal of the current study is to demonstrate elaborately the 

formulation that makes an easy programming.  

2. Literature review 

A few significant works which used FEM are incorporated in this paragraph. These important works 

using FEM helps for the readers who are learning these FEM concepts and doing formulations using 

any shear deformation theory. Zienkiewicz [1] studied structural behaviour using FEM. He discussed 

in detail about von Karman nonlinearity and geometric stiffness matrix associated with the membrane 
forces. Reddy [2] has described in detail about the laminated composite plates. Analytical and finite 

element derivations are discussed by Reddy [2] in detail. Solutions for bending, buckling, and 

vibration are also presented. He presented a good description of the mechanics and associated finite 
element models of laminated composite structures. Agarwal et al. [3] and Jones [4] presented in detail 

the fundamental and advance topics related to composite structures. Bhavikatti [5] has discussed the 

finite element concept and applications to simple structures in detail. Also, application of 
isoparametric concept to complex problems is discussed. Finite element formulations are made clear 

by solving simple problems by hand calculation. Sreehari and Maiti [6] presented in detail the 

introductory concepts, noticeably studied the mathematical formulations of FEM in a buckling and 

postbuckling problem. Many works are available with descriptions on the computational aspects of 

FEM. Chandrupatla and Belegundu [7], Ferreria [8], Cook et al. [9], and Kwon and Beng [10] 

discussed in detail about the finite element coding with numerous examples. Literatures with FEM 

have employed various shear deformation theories for finding solutions, like classical, first-order, and 

third-order plate theories. 

 

3. Mathematical formulation 

Consider a laminated plate, as in figure 1 as in reference [2], comprising of N orthotropic layers with 

the principle material co-ordinates (
1 2 3, ,k k kx x x ) of the k

th
 lamina oriented at an angle kθ to the 

laminate co-ordinate, x. The length, width, and thickness of plate are a, b, and h respectively. The co-

ordinate system has its origin at the corner of the plate on the mid plane. The z-axis is taken positive 
downward from the mid plane. 
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Figure 1. Coordinate system and layer numbering used for a laminated plate. 

 

3.1 Displacement field 

A simple higher order shear deformation theory in which transverse shear strains are assumed to be 
parabolically distributed across the plate thickness is considered initially. The displacement 

components are assumed to be in the form: 

       

2 3

( , , , ) ( , , , ) ( , , ) ( , , ) ( , , )

( , , , ) ( , , , ) ( , , ) ( , , ) ( , , )

( , , , ) ( , , , ) 0 0 0

o x x x

o y y y

o

u x y z t u x y z t x y t x y t x y t

v x y z t v x y z t z x y t z x y t z x y t

w x y z t w x y z t

φ β ψ
φ β ψ

         
         = + + +         
                              (1) 

Where u, v, and w are the displacement components in x, y, and z directions respectively;
0 0 0, ,u v w are 

the displacements of a point on the mid plane (x ,y, 0). ,x yφ φ  are the rotations of the cross-section 

perpendicular to x and y axes respectively. The parameters ,
x y

β β , ,x yψ ψ  are the higher order terms in 

Taylor’s series expansion and they represent higher order transverse cross sectional modes. For the 

case of FSDT, displacement field will be as shown below, 

( , , , ) ( , , , ) ( , , )

( , , , ) ( , , , ) ( , , )

( , , , ) ( , , , ) 0

o x

o y

o

u x y z t u x y z t x y t

v x y z t v x y z t z x y t

w x y z t w x y z t

φ

φ
     
     = +     
                                                     

 

3.2 Strain-displacement relations 

The linear strain-displacement relations are used in formulating the governing differential equations 

and are given as: 

                         
, , , ,xx yy xy yz zx

u v v u w v u w

x y x y y z z x
ε ε γ γ γ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = + = + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                        (2)
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3.3 Constitutive relations 

For laminate composed of orthotropic layers, with their 
1 2x x -plane oriented arbitrarily with xy-plane 

(
3x = 0), the transverse stresses (

zxσ ,
yzσ ) are also zero. An orthotropic material is characterized by 

nine elastic moduli and has three planes of elastic symmetry. Under the assumption that material 

behaves linearly elastic, the constitutive relation for each lamina can be written as: 

                                                                  { } [ ] { }Qσ ε=                                                                    (3)
 

Where the components of Compliance matrix, Q are expressed in terms of material properties and are 
given by the equation 

                                   

1 1 2 2 2 1 1 1

1 1 2 2 1 2

1 2 2 1 1 2 2 1 1 2 2 1

, , ,
(1 ) (1 ) (1 )

E E v E
Q Q Q

v v v v v v
= = =

− − −                          

(4) 

4 4 2 3 5 5 1 3 6 6 1 2
, ,Q G Q G Q G= = =  

Stress-strain relations in the local co-ordinate system can be expressed as: 

                                       

1 1 1 2 1 6

1 2 2 2 2 6

1 6 2 6 6 6

4 4 4 5

4 5 5 5

0 0

0 0

0 0

0 0 0

0 0 0

x x x x

y y y y

x y x y

y z y z

z x z xk k
k

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

σ ε
σ ε

τ γ
τ γ

τ γ

                =    
    
    
        

                          (5)
 

Where, 
ij

Q ’s  are transformed reduced stiffness  coefficients  and expressed as:   

            
1 1 4 2 2 4 2 2

2 2 4 4 2 2 2 21 2

4 2 2 4 2 2
2 2

3 3 3 3 2 2
1 6

3 3 3 3 2 2

2 6

2 2 2 2 2 2 2 2 2

6 6
2

4 4

4 5

5 5

2 4 0 0

4 0 0

2 4 0 0

2 ( ) 0 0

2 ( ) 0 0

2 ( ) 0 0

0 0 0 0

k

Q
m m n n m n

Q
m n m n m n m n

Q n m n m m n

Q m n m n m n m n m n m n

m n m n m n m n m n m nQ

m n m n m n m nQ

m nQ

Q

Q

 
 
  + − 
 
  − − − −  

= − − − 
  − − 
 
 
 
 
  

1 1

1 2

2 2

6 6

4 42

5 5

2 2

0 0 0 0

0 0 0 0
k

Q

Q

Q

Q

Q

Q
m n m n

n m

 
 
   
   
   
       
         
     −
 
 

              

(6) 

where m = cosine θ and n =sine θ 

3.4 Formulation for finite element method for FSDT 

The strain–displacement relations given above are written using FSDT as: 

                

0 0

1 1 1

0 0

2 2 2

0 0

6 6 6

0

4 4

0

5 5

x x

y y

x y

y z

z x

u
z k

x

v
z k

y

u v
z k

y x

w v

y z

u w

z x

ε ε ε

ε ε ε

γ ε ε

γ ε ε

γ ε ε

∂
= = = +

∂
∂

= = = +
∂

∂ ∂
= = + = +

∂ ∂

∂ ∂
= = + =

∂ ∂

∂ ∂
= = + =

∂ ∂    
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Where      

0 0 00 0 0 0
1 2 6

0 00 0
4 5

0 0 0

1 2 6

, ,

,

, ,

y x

y yx x

u v u v

x y y x

w w

y x

k k k
x y y x

ε ε ε

ε φ ε φ

φ φφ φ

∂ ∂ ∂ ∂
= = = +

∂ ∂ ∂ ∂

∂ ∂
= + = +

∂ ∂

∂ ∂∂ ∂
= = = +

∂ ∂ ∂ ∂  

The linear strain vector given in above equation can also be expressed in terms of midplane strain 

vector,  { }ε  

5 1 5 8 8 1
{ } [ ] { }Tε ε× × ×=  

Where, 

{ }0 0 0 0 0 0 0 0

1 2 6 1 2 6 4 5{ }
T

k k kε ε ε ε ε ε= and 

[ ]

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

z

z

T z

 
 
 
 =
 
 
    

 

Also,
                                                      

8 5 5 18 1
{ } [ ] { }Lε × ×× = ∆  

Where,
 

{ }0 0 0{ }
T

x yu v w φ φ∆ =  

and
 

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

[ ]

0 0 0 0

0 0 0

0 0 0 1

0 0 1 0

x

y

y x

x
L

y

y x

y

x

∂ 
 ∂
 

∂ 
 ∂
 
∂ ∂ 

 ∂ ∂
 

∂ 
 ∂

=  ∂ 
 ∂
 

∂ ∂ 
 ∂ ∂
 

∂ 
 ∂
 

∂ 
 ∂   

tD T Q T=  

1 1 1 2 1 6 1 1 1 2 1 6

1 2 2 2 2 6 2 2 2 6

1 6 2 6 6 6 1 6 2 6 1 6

2 2 2

1 1 1 2 1 6 1 1 1 2 1 6

2 2 2

1 2 2 6 1 2 2 2 2 6

2 2 2

1 6 2 6 6 6 2 6 1 6

4 4 4 5

4 5 5 5

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

Q Q Q z Q z Q z Q

Q Q Q z Q z Q z Q

Q Q Q z Q z Q z Q

z Q z Q z Q z Q z Q z Q
D

z Q z Q z Q z Q z Q z Q

z Q z Q z Q z Q z Q z Q

Q Q

Q Q

 
 
 
 
 
 =  
 
 
 

 



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3.5 Introducing the HSDT 

There are nine dependent unknowns in the displacement field given by equation (1). The number of 
dependent unknowns can be reduced by imposing the traction-free boundary conditions given by 

equations below on the top and bottom faces of the laminate. 

( , , / 2 ) 0y z x y hσ ± = and ( , , / 2 ) 0zx y zx y hσ σ± =  

If the transverse shear stresses are to vanish at the bounding planes of the plate ( / 2z h= ± ), the 

transverse shear strains, 
yzγ  and 

xzγ  must also vanish there, i.e., 

( , , / 2) 0yz x y hγ ± = and ( , , / 2) 0
zx

x y hγ ± =  

Using strain-displacement relations given by equations (2) and displacement field given by equation 

(1) in above equation, parameters , , ,x y x yβ β ψ ψ  can be determined in the form: 

0 0

2 2

4 4
, , 0

3 3
x x y y x y

w w

x yh h
ψ φ ψ φ β β

∂ ∂  
= − + = − + = =  ∂ ∂   

 

Using this equation, the displacement field given in equation (1) can now be expressed in terms of five 

dependent unknowns 
0 0 0( , , , , )x yu v w φ φ .The modified displacement field is now written in terms of 

0 0 0( , , , , )x yu v w φ φ
.
 

( , , , ) ( , , , ) ( , , )

( , , , ) ( , , , ) ( , , )

( , , , ) ( , , , ) 0

o x

o y

o

u x y z t u x y z t x y t

v x y z t v x y z t z x y t

w x y z t w x y z t

φ

φ
     
     = +     
          

0

3 0
1

0

x

y

w

x

w
c z

y

φ

φ

∂ + ∂
 

∂ − + ∂
 
 
  

 

The significance of constant 1c  is that it facilitates the representation of FSDT and HSDT through 

same equation. For
2

1 4 / 3c h= , equation is the case of HSDT which contains the same unknown 

parameters as in the case of FSDT. For 1c = 0, equation above is for the case of FSDT. 

Equation (1) can be now written as: 

0 1 3

0 1 3 3

0 1 3

xx xx xx xx

yy yy yy yy

xy xy xy xy

z z

ε ε ε ε
ε ε ε ε
γ γ γ γ

      
      

= + +       
       
       

 

0 2

2

0 2

yz yz yz

xz xz xz

z
γ γ γ
γ γ γ

    
= +     

     
 

Introducing 2

1 4 / 3c h=  and 
2 13c c=
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Where,
 

0

0 1 3

0 1 30

1

0 1 3

0 0

, ,

x x

x x x x xx

y y

y y y y yy

x y x y x y

y yx x

u

x xx

v
c

y y y

v u

x y x y x y

φ φ

ε ε ε
φ φ

ε ε ε
γ γ γ

φ φφ φ

     ∂ ∂∂
     ∂ ∂∂          
   ∂ ∂ ∂        

= = = −           
∂ ∂ ∂           

          ∂ ∂ ∂ ∂∂ ∂+     + +
∂ ∂ ∂ ∂ ∂ ∂        

 

and 

0

0

0

0

y

yz

xz

x

w

y

w

x

φ
γ
γ

φ

∂ 
+   ∂ 

=   
∂   + ∂ 

  ,   
0

2

12

0

y

y z

xz

x

w

y
c

w

x

φ
γ
γ

φ

∂ 
+   ∂ 

= −   
∂   + ∂ 

 

 

3.6 Formulation for finite element method for HSDT 

The strain–displacement relations are written using HSDT as: 

0 0 1 3

1 1 1 1 1

0 0 1 3

2 2 2 1 2

0 0 1 3

6 6 6 1 6

0 2 2

4 5 1 5

0 2 2

5 4 1 4

3

3

x x

y y

x y

y z

z x

u
z k c k z

x

v
z k c k z

y

u v
z k c k z

y x

w v
c k z

y z

u w
c k z

z x

ε ε ε

ε ε ε

γ ε ε

γ ε ε

γ ε ε

∂
= = = + −

∂
∂

= = = + −
∂

∂ ∂
= = + = + −

∂ ∂

∂ ∂
= = + = −

∂ ∂

∂ ∂
= = + = −

∂ ∂

 

 

where, 

0 0 00 0 0 0
1 2 6

0 00 0
5 4

0 0 0

1 2 6

1 1 1

1 2 6

2 2

4 5

, ,

,

, ,

, ,

, ,

y x

y yx x

y y y yx x x x

x x y y

u v u v

x y y x

w w

y x

k k k
x y y x

k k k
x x y y x x y y

k k

ε ε ε

ε φ ε φ

φ φφ φ

φ θ φ θφ θ φ θ

φ θ φ θ

∂ ∂ ∂ ∂
= = = +

∂ ∂ ∂ ∂

∂ ∂
= + = +

∂ ∂

∂ ∂∂ ∂
= = = +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= + = + = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = +

 

Similarly as above ,the linear strain vector given in above equation can also be expressed in terms of 

midplane strain vector,  
{ }ε

 

5 1 5 13 13 1
{ } [ ] { }Tε ε× × ×=  

{ }0 0 0 0 0 0 1 1 1 0 0 2 2

1 2 6 1 2 6 1 2 6 4 5 4 5{ }
T

k k k k k k k kε ε ε ε ε ε=
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[ ]

3

3

3

2

2

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0
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{ }0 0 0{ }
T

x y x yu v w φ φ θ θ∆ =  
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


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
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



  

tD T Q T=  
 

 

3.7 Potential energy of the laminate 

The present analysis involves structural displacement due to external mechanical loading. The total 

energy of the system can thus be considered as the strain energy due to mechanical loading. Thus, the 

potential energy of the laminated composite plate undergoing deformation is given as 

Potential Energy=Strain Energy 

1
{ } { }

2

TU d Vε σ= ∫
 

The stress strain relation can be written as: 

{ } [ ]{ }Qσ ε=  

Using the equations the equation for potential energy can be written as 
 

1 1
{ } { } [ ]

2 2

TT T
U Q d V T Q T d Vε ε ε ε= =∫ ∫  
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Or  

1
{ } [ ]{ }

2

TU D d Aε ε= ∫
 

Where
 

1
1

[ ] [ ] [ ] [ ]
N

z k
T

z k
k

D T Q T d z
−

=

= ∑ ∫
 

Thus the expression for potential energy becomes
 

1
[{ } [ ] [ ][ ]{ }]

2

T T
U L D L d A= ∆ ∆∫

 
 

 

3.8 Solution method 

Solution methodologies for present anlaysis are presented. Also the implementation of finite element 

method with 8- noded isoparametric elements is presented.  

The domain is divided into number of sub-domains that are known as finite elements. These elements 

are connected at various nodes.

 

For the finite element analysis, 

 
( )

1

N E
e

e

U U
=

= ∑  

( )
( )

1

1
[{ } [ ] [ ] [ ]{ } ]

2

N E e
e T T

e

U L D L d A
=

= ∆ ∆∑ ∫  

Where NE is the number of elements used for meshing the plate 

The displacement vector∆  can be written in terms of shape functions iN and displacement vector, q 

for an element as ( ) ( ) ( ){ } [ ] { }e e e

iN q∆ =  

On substituting, element potential energy can be written as 

( )( ) ( ) ( ) ( )

1

1
{ } { } [ ] [ ] [ ] { } { }

2

N E
e T e T T e e

e

U q N L D L N q d A
=

= ∑ ∫
 

Element potential energy can be written as  

( )( ) ( ) ( ) ( ) ( ) ( )1
{ } { } [ ]{ } { }

2

e e T e T e e e
U q B D B q d A= ∫  

( ) ( )[ ] [ ][ ]e eB L N=  
 

Where  [ ]( )

1 2 3
[ ] ......e

NN
B B B B B=

 

Element bending stiffness matrix is defined as ( ) ( ) ( ) ( )e e T e eK B D B d A= ∫  

Thus finally the elemental potential energy can be written as ( ) ( ) ( ) ( )1

2

e e T e eU q K q=  
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Now,
( )eK is computed numerically by transforming the existing coordinate system to natural 

coordinate system ξ  and η ,and then can be written as: 

1 1

( )

1 1

dete T

ij i jK B D B Jd dξ η
− −

− −

= ∫ ∫
 

Where, J is the Jacobian Matrix and is given by 

x y

J
x y

ξ ξ

η η

∂ ∂ 
 ∂ ∂
 =
∂ ∂ 

 ∂ ∂   

When numerical integration is adopted, the element matrix of equation becomes: 

( )

1 1

1
d e t

2

N N
e T

ij p q i j

p q

K W W B D B J
= =

= ∑ ∑  

Where 
,p qW W

 are the weights used in the Gaussian quadrature and work done:
 

p qW w w d x d y= ∫ ∫  

 4. Results and discussions 

Finite element method’s results for laminated composite plates are obtained by analyzing the 

formulation explained in previous section and programming in MATLAB. An eight noded C0, 
isoparametric element has been employed for discretization of the laminate. For the FSDT, a shear 

correction factor 5/6 has been used. Based on convergence study, a (12 × 12) mesh has been used in 

most cases of later study. In all problems considered, the individual layers are taken to be of equal 
thickness. A variety of problems is studied and is and compared the result to the existing results. The 

finite element method provides a numerical solution to a complex problem, it may therefore be 

expected that the solution must converge to the exact solution under certain circumstances. It can be 
shown that the displacement formulation of the method leads to be upper bound to the actual stiffness 

of the structure. Hence as the mesh is made finer, the solution should converge to the correct result. 

Non dimensional results are presented. The non-dimensionality used for transverse deflection is      
3

2

4

0

100
( )

h E
w w

q a
=    

        

        Convergence of the solution with refinement in mesh for four layered, symmetric and anti-

symmetric cross-ply laminate with a/h ratio 10 to 100 is shown in table 1. Similarly convergence of 
solution with refinement in mesh for four layered, symmetric and anti-symmetric angle-ply laminate 

with a/h ratio 10 to 100 is shown in table 2. As the number of mesh increases the convergence of the 

results is found to be fairly accurate (also indicated as percentage variation in table 3). It is clear from 
the obtained results that thick plates have high deflection and deflection becomes almost constant after 

a/h ratio of 40. As the number of layers increases, the deflection becomes almost constant. From the 

table 1 and 2, it can be concluded that deflections decreases as the a/h ratio is increased or number of 

layers are increased.  
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Table 1. Non-dimensional central deflection for symmetric and antisymmetric cross-ply, simply 

supported-1, subjected to sinusoidal load. 

a/h Mesh size       0/90/90/0         0/90/0/90 

10 

2x2 0.61078599 0.63179162 

4x4 0.66084344 0.67825433 

6x6 0.66220033 0.67967253 

8x8 0.66240051 0.67988967 

12x12 0.66246599 0.67996510 

16x16 0.66247432 0.67997649 

20 

2x2 0.46912938 0.52907672 

4x4 0.49103859 0.54983221 

6x6 0.49103351 0.54978842 

8x8 0.49101430 0.54976667 

12x12 0.49100115 0.54975500 

16x16 0.49099687 0.54975188 

30 

2x2 0.43560225 0.49865843 

4x4 0.45819491 0.52598234 
6x6 0.45800222 0.52573235 

8x8 0.45794732 0.52566923 

12x12 0.45792116 0.52564191 
16x16 0.45791485 0.52563615 

40 

2x2 0.41897476 0.47785934 

4x4 0.44652561 0.51756527 

6x6 0.44632058 0.51730901 

8x8 0.44625650 0.51723449 

12x12 0.44622675 0.51720223 

16x16 0.44621994 0.51719562 

50 

2x2 0.40730782 0.45964784 

4x4 0.44105045 0.51359891 

6x6 0.44088891 0.51340659 

8x8 0.44082313 0.51332980 

12x12 0.44079241 0.51329577 

16x16 0.44078554 0.51328882 

60 

2x2 0.39765708 0.44250455 

4x4 0.43801956 0.51137254 

6x6 0.43792978 0.51128330 

8x8 0.43786524 0.51120817 

12x12 0.43783448 0.51117365 

16x16 0.43782769 0.51116658 

70 

2x2 0.38909467 0.42602464 

4x4 0.43613903 0.50995674 

6x6 0.43614101 0.50999967 
8x8 0.43607919 0.50992837 

12x12 0.43604881 0.50989400 

16x16 0.43604216 0.50988690 

80 

2x2 0.38130352 0.41013982 
4x4 0.43486581 0.50896293 

6x6 0.43497686 0.50916328 

8x8 0.43491874 0.50909726 

12x12 0.43488890 0.50906339 

16x16 0.43488242 0.50905632 

90 

2x2 0.37417221 0.39489880 

4x4 0.43393949 0.50820534 

6x6 0.43417607 0.50858662 

8x8 0.43412239 0.50852700 

12x12 0.43409321 0.50849385 

16x16 0.43408689 0.50848685 

100 

2x2 0.36765554 0.38038078 

4x4 0.43322246 0.50758606 

6x6 0.43360083 0.50817094 

8x8 0.43355225 0.50811870 

12x12 0.43352378 0.50808641 

16x16 0.43351762 0.50807949 
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Table 2. Non-dimensional transverse deflection for angle-ply, simply supported-2, sinusoidal load. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 
 

a/h Mesh size -45/45/45/-45
 

 -45/45/-45/45
 

10 4x4 0.4970194 0.4546066 

6x6 0.4989648 0.4553509 
8x8 0.4989408 0.4552053 

10x10 0.4988180 0.4550849 

12x12 0.4987020 0.4550050 

20 4x4 0.3541954 0.3257407 

6x6 0.3563154 0.3252877 
8x8 0.3564358 0.3249972 

10x10 0.3563869 0.3248496 

12x12 0.3563067 0.3247644 

30 4x4 0.3247229 0.3016496 

6x6 0.3282545 0.3011180 

8x8 0.3287686 0.3008477 

10x10 0.3288858 0.3007129 

12x12 0.3288884 0.3006348 

40 4x4 0.3127310 0.2930945 

6x6 0.3177112 0.2926053 

8x8 0.3186273 0.2923696 

10x10 0.3189232 0.2922512 

12x12 0.3190184 0.2921813 

50 4x4 0.3059923 0.2890616 

6x6 0.3123527 0.2886311 

8x8 0.3136399 0.2884272 

10x10 0.3141066 0.2883240 

12x12 0.3142943 0.2882620 

60 4x4 0.3014056 0.2868218 

6x6 0.3090950 0.2864505 

8x8 0.3107194 0.2862729 

10x10 0.3113414 0.2861828 

12x12 0.3116166 0.2861278 

70 4x4 0.2978740 0.2854335 

6x6 0.3068662 0.2851214 

8x8 0.3088003 0.2849651 

10x10 0.3095609 0.2848858 
12x12 0.3099158 0.2848370 

80 4x4 0.2949249 0.2844999 

6x6 0.3052113 0.2842489 

8x8 0.3074330 0.2841101 
10x10 0.3083169 0.2840397 

12x12 0.3087436 0.2839961 

90 4x4 0.2923261 0.2838297 

6x6 0.3039046 0.2836439 
8x8 0.3063993 0.2835195 

10x10 0.3073939 0.2834564 

12x12 0.3078847 0.2834172 

100 4x4 0.2899556 0.2833214 

6x6 0.3028248 0.2832059 
8x8 0.3055820 0.2830939 

10x10 0.3066771 0.2830367 

12x12 0.3072254 0.2830013 



13

1234567890

ICMAEM-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 225 (2017) 012018 doi:10.1088/1757-899X/225/1/012018

 

 

Table 3.  Convergence of FEM solution for different mesh size for symmetric cross-ply laminate 

denoting the percentage change in last two values. 

 

          The Matlab coding is now being extended to higher order theories (as presented in Table 4) and 

presently the values of non-dimensional central deflections under the action of transverse loads are 

got. From the results obtained now in HSDT, it is clear that the third-order theory (TSDT) gives more 

accurate results for deflections when compared to the first-order shear deformation plate theory with K 

= 5/6. It is known that the shear correction factor K depends on the lamina properties and the stacking 
sequence. The fact that no shear correction coefficients are needed in the third-order theory makes it 

more convenient to use. In general, the equilibrium-derived transverse shear stresses compare more 

favourably with the elasticity solution than those obtained from the constitutive equations for 
equivalent single-layer theories. There is quite difference between FSDT and HSDT results for thick 

plates while for thin plates both the theories predict similar behaviour. Effect of transverse shear strain 

is thus noticed. Figure 2 contains plots of non-dimensionalized centre deflection to thickness ratio a/h 
for a square, symmetric cross-ply laminate (0/90/90/0) under sinusoidal distributed load. Compared to 

the elasticity solution, the third-order theory underpredicts deflection by less while the first-order 

theory underpredicts by higher amounts. When the plate is thick, the difference between FSDT and 

HSDT values are large. This means that the plate behaviour prediction will be more unsafe by FSDT 

than by HSDT in such cases. 

Table 4. Non-dimensionalised deflection for FSDT and HSDT. 

a/h 

 

 

Source 

 

 Non-dimensionalised 

deflection*100 

 

 

Reference [2] 

    

 

10 

FSDT 0.6624 0.663 

TSDT 0.7141 0.715 

 

20 

FSDT 0.4909 0.4912 

TSDT 0.5055 0.506 

 

100 

FSDT 0.4335 0.4337 

TSDT 0.4343 0.434 

 CLPT  0.431 

Lamination 

Scheme 
a/h 

Mesh size 

2x2 4x4 6x6 8x8 

Percentage 

change in last 

two values 

0/90/90/0 

 

10 

 

0.6107 

 

0.6608 0.6622 0.6624 -0.0320% 

30 

 

0.4356 
0.4581 0.4580 0.4579 0.0218% 

100 
 

0.3676 
0.4332 0.4336 0.4335 0.0236% 

0/90/0 

 

10 
 

0.6781 
0.7383 0.7395 0.7396 -0.0134% 

30 
 

0.4398 
0.4672 0.4670 0.4669 0.0214% 

100 0.3969 0.4340 0.4344 0.4344 0.0% 
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Figure 2. Plots of non-dimensionalized centre transverse deflection versus side-to-

thickness ratio of a symmetric cross-ply (0/90/90/0) laminate under sinusoidal distributed 

load. 

 

5. Conclusion 

Detailed bending analysis of a laminated composite plate has been studied using FSDT and HSDT. 

Formulations based on both FSDT and HSDT explained in a detailed manner. Matlab codes for 

complete FSDT and HSDT analysis has done. The codes are providing satisfactory results when 
compared with references. The convergence is obtaining in composite plate analysis. The results of 

non-dimensionalized central transverse deflection various conditions are calculated and compared with 

published results available in literature. A very good agreement of the results obtained by present 

method with reference solutions, shows that the formulation and programming is robust, effective and 

highly accurate. As the a/h ratio is increased, the non-dimensional transverse deflection decreases. 

And it is observed that for a/h ratio greater than 40, the deflection becomes almost constant. The 

difference between FSDT and HSDT values are decreases as the thickness of plate decreases. Thus the 

current study elaborately discussed the FEM formulation that makes an easy programming even for a 

beginner in this field and presented some significant results for the structural responses of composite 
plates. 
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