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Abstract: In the present study, a flexible pipe has been considered to study the effect of ratio of
visco-elastic material viscosity to fluid viscosity on the stability of flexible laminar pipe flow with
axi-symmetric disturbances. The effect of thickness of visco-elastic material on the stability of
flexible pipe flow with outer rigid shroud has also been studied. The stability curves are drawn for
various values of the ratio of visco-elastic material viscosity to fluid viscosity. It is observed that
stability of flow is increasing by decreasing the ratio of visco-elastic material viscosity to fluid
viscosity.
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I. INTRODUCTION
Flexible pipe flow is normally seen in nature such as human body, industrial applications for
reactors and membranes.  Two types of flexible pipe flow are found in nature. First type is one
in which shape and size of pipe is changed due to internal pressure of the fluid. Second type is
the one in which shape and size are not deforming, which means pressure gradient is constant
along the direction of flow.

Kramer’s [1] - [4] studied the flow over flexible surface on a flat plate and it was found that
flexibility of flat surface delay the transition and drag is reduced that means flow remains
laminar for a longer period. Carpenter [5], [6], Davies, Carpenter and Lucey [7], [8] also
obtained the same result.

Reynolds [9] performed the experiment in rigid circular pipe and classified the flow as laminar,
transition and turbulent based on the Reynolds number. Davey and Drazin [10] shown by
numerical analysis that flow is stable to very small disturbances at all Reynolds number R and
axial wavenumbers. Rouleau and Garg [11] and Grosch and Salwen [12] have also confirmed
this result by numerical studies.  Salwen and Grosch [12] showed that center line modes (waves)
are more unstable as compared to wall modes.  Venkateswarlu et.al [13] have studied that
non-linear terms increased the instability of pipe flow.
Hamadiche and Gad-el-Hak [14] also studied the flexible tube flow with 2-Dimension and
3-Dimemnsion disturbances problems. They found that flexible tube is unstable at all Reynolds
number R and all axial wavenumbers.which indicates flexible tube is unstable at very small,
medium and higher Reynolds number R and all axial wavenumbers . In the present study
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considered a non-collapsible pipe flow problem. The flow have been chosen in such a way that
the interface of the visco-elastic material and the fluid is getting deformed in the normal (N) as
well as on the tangential (T) direction to flow and hence such a flow is defined by (N+T).

21 ru  .  Reynolds number /*
oVrR  , where V is

maximum center line velocity and  is the kinematic fluid viscosity.
The ̂ and ̂ are the deformation of flexible material along r-direction and x -direction and sp̂

is the pressure in the visco-elastic material.  All details of mathematical terms are given in
figure-1.
In this paper, the stability is studied for flexible laminar pipe flow and outer surface of pipe is
considered as rigid.  The Fourier waves (modes) are inserted into pipe as a disturbance as given
below:

)()](),(),([)ˆ,ˆ,ˆ( ctxierprvrupvu   (1)
Here the disturbance velocity is given by ir iccc 

The   Navier Stokes and continuity equations may be expressed as follows:
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Continuity:
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Here prime )( represent the differentiation with r.

Figure 1: Model of the visco-elastic pipe problem.

A. The fluid-side disturbance equations
Here, the laminar flow through circular flexible pipe for linear stability is considered as given in
figure-1.  The outer side of the pipe is considered as rigid surface. Figure 1 shows the two
dimensional flexible pipe flow. The u and v are the velocity along axial x-axis and radial r-axis.
The laminar average velocity can be written as
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The Fourier waves are inserted into the linearized Navier-Stokes and continuity equations (2-4).
After doing some mathematical exercise, the 4th order differential equation in terms of v for
axi-symmetric disturbances (2-D waves) in the fluid-side is obtained as follows:
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B. The flexible material equations

The Navier and continuity equations for displacements in the flexible materials may be
expressed as   follows:
 - Displacement:
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Where, K̂ is the flexible term and is given as
ir KiKK ˆˆˆ 
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Kumaran (1995) gave a flexible parameter  as GV /2 , where G is shear modulus of

flexible material. The K̂ is given by Kumaran as

tRR

K r









2

1ˆ and
2

1
~




R

K . (11)

For the visco-elastic material and fluid sides.  Introducing
ci

t
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The flexible material deformations may written as
follows: )}]({exp[]),(),([)ˆ,ˆ,ˆ( ctxiprrp ss   (13)

The following differential equation for the visco-elastic material can be obtained in terms of 

displacement as follows:
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C. Boundary conditions for visco-elastic and fluid sides
The boundary conditions for combined fluid-solid problem for axisymmetric case, n = 0, are
given as below:
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Pipe center at, 0r :
.0)0(,0)0(  vu (15)

Surface of the pipe
At the surface of the visco-elastic pipe, viz. at r = H:

0)(,0)(  HH  . (16)

D. Interface between the fluid and the visco-elastic material
The boundary conditions at the interface between the solid and the fluid-sides may be written as
below: The continuity of velocities, linearised with respect to r = 1, is given as follows:
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Particularly, eq. (22a) is the tangential no-slip boundary condition. The above interface
velocities can also be written as follows:

wwww uuci   ,
ww vci   (18a, b)

The expressions for the stresses from the fluid-side and solid-side are given as below, where
generically  represents to the fluid-side stresses and  represents to the visco-elastic material
-side stresses.
Fluid-side:
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Solid-side:
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The stress matching conditions respectively for the normal and axial directions, are given as

rrrr   and
rxrx  

III. Numerical Methods

The above differential equations can be solved by using the basic concept of the finite difference
techniques.  The differential equations can be written for the Fourier modes in the matrix forms
as follows:

][][][ IJIJ PA  , )22..(,4,3,2,1,  NJI ,

Here, N is the number of intervals for above matrix.   The above matrix can be solved for
visco-elastic material side and   fluid-side by using the finite difference method. The numerical
equation for the fluid side and visco-elastic side are solved by using the FORTRAN
programming and these programs are compiled by the Fortran Lahey Fitjtsu.
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In present paper, stability curves are drawn for the effect of ratio of visco-elastic material
viscosity to fluid viscosity ( fsr  / ) for normal plus tangential (N+T) motion of interface

of the fluid and visco-elastic material. Here, it has been considered two types of modes (waves)
for the analysis of stability problem. One mode is unstable at very low Reynolds numbers and
defined it as M1 types modes.  Other mode is unstable at intermediate and higher Reynolds
numbers and referred it as M2 types of modes. Further discussion, it has been referred these
modes as M1 and M2 modes.  The effect of ratio of visco-elastic material viscosity to fluid
viscosity on the thickness of visco-elastic wall has also observed.  Stability of flexible pipe flow
depends upon the damping of the modes. i.e.  Whether Fourier waves (modes) are damped or
amplified.  The modes are unstable for ci >0, stable for ci<0 and neutral for ci=0.

A. Effect of r on visco-elastic wall thickness(H)

The figures 2(a) and 2(b) show the effect of different values of r for the axi-symmetric
disturbances of M1 types of modes.  From these figures, it is seen that the higher values of

r decreases the imaginary values of wave speed (c = cr+ici) because it is seen that the lower
positive values of ci is more stable as compare to higher positive values of ci.  So, the lower
value of ci makes the modes more stable. The real part of wave speed (cr) has no effect on the

r values.  It is also found that higher value of wall thickness (H) makes the modes more
unstable as compare to lower H.
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Figure 2: (a) Curve for variation of H and ci for modes M1,  = 6.   ‘A’ is for r =0.0 ‘B’ is for

r =0.5.(b) Curve for Variation of H and cr for modes M1,  = 6.   ‘A’ is for r =0.0 ‘B’ is
for

for M2 types of modes for different values of r . From these figures, we found the same
observations and behavior of effect of r as discussed above for M1 types of modes on the
stability of flexible pipe flow i.e. flexible pipe surface becomes more rigid for higher values
of r . So, we can conclude that higher r value makes the all types of modes more stable.

 r =0.5.
The figures 3(a) and 3(b) show the variation of visco-elastic wall thickness (H) versus cr and ci
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Figure 3 :(a) Curve for variation of H and ci for modes M2,  = 6.   ‘A’ is for r =0.0 ‘B’ is for

r =0.8. (b) Curve for variation of H and ci for modes M2,  = 6.   ‘A’ is for r =0.0 ‘B’ is for

r =0.8.

B. Effect of wall compliance 

Figures 4 (a) shows the neutral stability curves in  -R plane for different values of  for M1
types of modes. Here, we have taken the 0r and 2H . From this figure 4, we observed

that higher values of wall compliance  increases the instability of the modes. i.e. area under
curves are increased  by higher values . It is also seen from figure 4 that M1 types of modes are
more unstable for very lower values of Reynolds number R. Modes are unstable inside the
curve, neutral on the curve and stable outside the curves. Figure 4.(b) shows variation of the
neutral stability curves in  -R plane for different values of  for M2 types of modes and these
modes are unstable for medium and higher Reynolds number R. We found that the higher value
increases the instability of modes.  So, we can conclude that all types of modes increases the
instability for higher values of .

C .Effect of wall damping r
The figures 5 (a) and 5 (b) show the effect of visco-elastic viscosity to fluid viscosity ( r ) for

M1 types of modes.  Here, we considered 2H and different values of r . From these

figures, it is observed that the higher value of r decrease the instability of visco-elastic pipe

flow.  Higher values of r means the more rigidity i.e. less visco-elasticity. It is found that even

with a large value of 2.0r , there is little influence of r on the upper limb of the neutral
curve, and modest influence on the lower limb of the neutral curve. We may conclude that
higher values of wall damping r increases the stability of visco-elastic pipe flow.
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Figure 4: (a) Stability Curves in  - R plane various  for   modes M1, H=2.0. ‘A’ is for  =
6, r =0, ‘B’ is for  = 8, r = 0, ‘B’ is for  = 9, r = 0, (b) Stability curves in  - R plane
various  for   modes M2, H=2.0.  ‘A’ is for  = 4, r = 0, ‘B’ is for  = 6, r = 0, ‘B’ is for 
= 8, r = 0
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Figure 5: (a) Neutral stability curves in  - R plane various r for   modes, M1, H=2.0. ‘A’ is
for  = 6, r = 0, ‘B’ is for  = 6, r = 0.2, (b) Stability curves in  - R plane for various r for
modes, M1. ‘A’ is for  = 9, r = 0, ‘B’ is for  = 9, r = 0.1.

Figure 6 (a) shows the effect of r in  - R on the stability of flexible pipe flow for M2 type of

modes.  Here, we have considered 2H , =4 and different values of r .  From figure 8, it

found that the higher values of r increases the stability.  It is seen that effect of r is moderate

on the neutral stability curve. Figure 6 (b) represent the effect of r on the neutral stability
curve of M2 typed of modes on the flexible pipe flow for axi-symmetric disturbances. In this
figure, we considered 2H , =6 and different values of

r .It is observed that there is little
influence of

r on the lower limb of the neutral curve, and modest influence on the upper limb
of the neutral curve.
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Figure 6: (a) Stability curves in  - R plane for various r for   modes, M2. ‘A’ is for  = 4, r

= 0, ‘B’ is for  = 4, r = 0.2 and ‘C’ is for  = 4, r = 0.4. (b) Stability curves in  - R plane
for different values of r for   modes, M2. ‘A’ is for  = 6, r = 0, ‘B’ is for  = 6, r = 0.1 and
‘C’ is for  = 1, r = 0.2.
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viscosity of visco-elastic material as per the definition of r . The higher values of r makes the
flexible pipe more rigid. As we know that the rigid pipe flow is more stable than the flexible
pipe flow. Hence, final conclusion can be drawn that the more viscosity of visco-elastic material
makes the flow more stable.

V. CONCLUSIONS

The following conclusions have been drawn on the basis of the results given above.
(1) It is found that the flexible pipe is unstable for all ranges of Reynolds number (R) and

azimuthal wave number ().
(2) The increase in the visco-elastic material thickness (H) increases the instability of flexible

pipe flow, which means higher visco-elastic material thickness makes the pipe more

Figure 7: Stability curves in  - R plane for different values of r for   modes, M2. ‘A’ is for 
= 8, r = 0, ‘B’ is for  = 8, r = 0.2 and ‘C’ is for  = 8, r = 0.4.

Figure 7 shows the variation of neutral stability curve in  - R for different values of  r for M2

typed of modes. It is observed that there is little influence of  r on the higher Reynolds number

R on the neutral curve, and large influence on the lower values Reynolds number R on the

neutral stability curve. From the above discussions of effect of wall damping r , we may

conclude that the higher wall damping damps the modes. i.e higher  values of  r increases the

stability of flexible  pipe flow. The higher values of r ( r  s /  f ) means the higher
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flexible and hence more flexibility of pipe increases the instability. As it is know that the
rigid pipe is more stable as compare to flexible pipe.

(3) The higher values of visco-elastic parameter () increases the instability of flexible pipe
flow because more  makes the pipe more flexible. So flexible pipes flow becomes more
unstable with higher .

(4) Instability of flexible pipe flow decreases with the larger values of r. i.e. the larger values
r makes the flexible pipe flow more rigid. It means that rigidity of visco-elastic material
pipe is increased by increasing the values of r.
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