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Abstract. In this work differential transform method (DTM) is used to study the vibration 

behavior of fluid conveying single-walled carbon nanotube (SWCNT). Based on the theories of 

elasticity mechanics and nonlocal elasticity, an elastic Bernoulli-Euler beam model is 

developed for thermal-mechanical vibration and instability of a single-walled carbon nanotube 

(SWCNT) conveying fluid and resting on an elastic medium. The critical fluid velocity is being 

found out with different boundary conditions, i.e. Fixed-Fixed and simply supported at ends. 

Effects of different temperature change, nonlocal parameters on natural frequency and critical 

fluid velocity are being discussed.  

1. Introduction  
Nanoscale engineering materials have superior mechanical, electrical and thermal performances than the 

conventional structural materials. They have attracted great interest in modern science and technology after the 

invention of carbon nanotubes by Iijima (1991) [1]. Carbon nanotubes are allotropes of carbon with a cylindrical 

nanostructure. Nanotubes have a length-to-diameter ratio of up to 132,000,000:1 [2], significantly larger than 

any other material. The structure of a single-walled carbon nanotube can be understood by packaging a one-

atom-thick layer of graphite called graphene into a seamless cylinder [2], [3], and [6]. Single-walled nanotubes 

are the perfect candidate for miniaturizing electronics rather than the micro- electromechanical scale currently 

used in electronics [9]. Carbon nanotubes are the strongest and stiffest materials in terms of tensile strength and 

elastic modulus respectively [7]. Eringen [8] proposed the nonlocal continuum theories for the analysis of small 

sized structures. In nonlocal elasticity theory, the small-scale effects are captured by assuming that the stress at a 

point is a function not only of the strain at that point but also a function of the strains at all other points of the 

domain. The mechanical analyses of nanostructures, theoretical and mathematical modeling becomes an 

important issue when nano-engineering comes into picture. This is due to the scale effect of the nanostructures. 

The classical theory of elasticity being the long-wave limit of the atomic theory excludes these effects and thus 

this theory would fail to analyze the structure with small-scale effects accurately. Thereby size-dependent 

continuum-based methods [5-7] are becoming popular in modeling small sized structures as it offers much faster 

and accurate solutions. Sudak [9] carried out buckling analysis of multi-walled carbon nanotubes. Wang and 

Varadhan [10] analyzed the small scale effect of carbon nanotube and shell model. Yakobson et al. [11] 

introduced an atomistic model for axially compressed single walled carbon nanotube and compared it to a simple 

continuum shell model. Sears and Batra [12] proposed a comprehensive buckling analysis of single walled and 

multi-walled carbon nanotubes by molecular mechanics simulations and continuum mechanics models. Reddy 

reported a suitable reference concerning nonlocal theories for bending, buckling and vibration analysis of 
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nanobeams [13]. Work related to bending, vibration and buckling analyses of carbon nanotubes and graphene 

sheets using nonlocal elasticity are found in R. Kumar, et al [14], B. Ravikumar [15], and Pradhan S.C., et al. 

[16]. 

In the present work, the vibration analysis of fluid conveying single-walled carbon nanotube embedded in an 

elastic medium is studied using the differential transformation method. Zhou [17] proposed differential 

transformation method to solve both linear and non-linear initial value problems in electric circuit analysis. Later 

Chen and Ho [18] applied this method to eigen value problems.  

 

The Differential transform method is a semi-analytical method based on the Taylor series expansion. In this 

method, certain transformation rules are applied to the governing differential equations and the boundary 

conditions of the system. And they are transformed into a set of algebraic equations in terms of the differential 

transforms of the original functions. These algebraic equations give a solution which gives the desired solution 

of the problem. 

The differential transformation of the k
th 

derivative of the function u(x) is defined as follows: 
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And the differential inverse transformation of U(k) is expressed as  
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In real application function, u(x) is expressed as finite series and equation (2) can be written as:  
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With the use of certain transformation rules we convert the governing differential equation and associated 

Boundary Conditions into some algebraic equations; on solving them we get the desired results. Following 

transformation, table is used for this purpose.   

Table 1: Differential Transformations for Mathematical Equations 

Original Function                                     Transformed Function 
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2.  Mathematical Formulation and Solution Procedure 

2.1: Non-Local Formulation of SWCNT 
Eringen [8] first introduced Nonlocal elasticity theory; the Simplified constitutive relation in a differential form 
is given as follows: 

       
2 2

0(1 ( ) )e a σ τ− ∇ =                                                                                                      (4) 

Where, τ is the classical, macroscopic stress tensor at a point, ‘a’ is an internal characteristic length (e.g., lattice 

parameter, granular size, the length of C–C bonds), e0a is a material constant, σ is nonlocal stress tensor and 
2∇  

is the Laplacian operator. 

For a beam type structure, in the thickness direction, the nonlocal behavior can be neglected. Thus, for a 

homogeneous isotropic Euler–Bernoulli beam, the nonlocal constitutive relation takes the following form: [20] 

       
2

2

0 2
( ) . x x

x x x xe a E
x

σ
σ ε

∂
− =

∂
                                                                                               (5) 

Where E is the modulus of elasticity. 

On the basis of the theory of thermal elasticity mechanics, the axial force Nt1can be written as,  
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Where �x denotes the coefficient of thermal expansion in the direction of x-axis and ν is the Poisson’s ratio and 

T denotes the change in temperature. 

The carbon nanotube is arranged in a manner given below in figure 1, it is embedded in the elastic medium. U is 

the fluid velocity, K is the elastic constant for Winkler foundation and L is the length of the nanotube. 

 
Figure1. Analysis model of CNT embedded in the elastic medium. 

If we consider the thermal effect, the differential equation of motion related to shear force of fluid conveying 

SWCNT is given by (Chang, 2012), 
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Where Q is the shear force, w is the transverse deflection, m is the mass of nanotube per unit length and M is the 

mass of fluid per unit length of the beam. 

Q satisfies the condition for equilibrium of Euler’s beam 1M
Q

x

∂
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Where M1 is the nonlocal bending moment and eq.(9) represents the nonlocal bending equation of nanotube. 

 By combining equations (7), (8) and (9), we have 
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Finally, by above equation and by eq.(9), the governing differential equation is given as 
4 4 4
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In this study, the Euler-Bernoulli beam model using stress gradient approach for the dynamic analysis of single-

walled carbon nanotube with nonlocal effect could be considered. Where, w = w(x,t) is the transverse beam 

deflection, x,t are the spatial coordinates, I is the moment of inertia of carbon nanotube and e0  is a constant 

appropriate to each material, a is an internal characteristic length.  

 

For the dynamic analysis, the Eq.(11) can be non-dimensionalized using L ( length of CNT)  and by substituting,  

W= w/L and X= x/L, we have; 
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2.2:  DTM Formulation:  

In order to derive DTM form of Eq. (12), we refer Table 1 and the following expression can be written easily. 

 
 

      (13) 

 

 

2.3: Application of Boundary conditions 

2.3.1 SIMPLY SUPPORTED AT BOTH ENDS.  

The boundary conditions for the case of simply supported SWCNT at both the ends are defined as 

0''0,0,0''0,0 =(L)w=w(L)=)(w=)w(                                                                              (14) 

By using differential transformation these can be written as: 
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Where, 2 2 2
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We can calculate W(k), up to n terms from the eq.(13), by assuming W(1)= c1, W(3)=c2 and it will be 

substituted in eq.(15) & (16) and by solving these equations for non-trivial solution, natural frequency (ω) of the 

carbon nanotube can be calculated. The accuracy of natural frequency increases with increase in the value of 

n(number of iterations) and saturates at a maximum n value, i.e n =  Nmax. 

2.3.2 FIXED AT BOTH ENDS.  

For the SWCNT supported by fixed at both the ends, the boundary conditions defined as 

 00,0,00,0 =(L)w'=w(L)=)(w'=)w(                                                                           (17) 

By using differential transformation these can be written as: 

 (0 ) 0 , (1) 0W W= =                                                                                                                                (18) 
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By assuming W(2) = c1, W(3) = c2 the eq.(13) can be calculated up to n terms and a similar procedure is 

followed as that of simply supported boundary condition. 
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3. Results and Discussion 

3.1 Validation: 

In Fig. 2, and Fig.3 validation of the results has been done with the results available in the literature [20]. The 

outer radii Rout = 3.5 nm and thickness of the nanotube h = 0.34 nm. The mass density of single-walled carbon 

nanotube is 2.3 g/��
3
 with Young’s modulus E of 1 TPa, the density of water is 1 g/��

3
, aspect ratio L/(2Rout) 

= 100, nonlocal parameter e0a/L is taken from 0 to 0.05 and Winkler constant K from 0 to 0.1 MPa.           In the 

present study, consider two cases of temperature region, low and high. The coefficient of thermal expansion 

∝x=−1.6×10-6 K-1 and 1.1×10-6 K-1 for  low or room temperature and high temperature region respectively is 

considered. The Poisson’s ratio is considered as 0.3.  

The nanotube becomes more flexible and the natural frequencies get reduce with increase in flow velocity. The 

fundamental natural frequency becomes zero and the nanotube becomes unstable when the flow velocity exceeds 

a certain value, this corresponds to the instability of the single walled carbon nanotube and the flow velocity 

producing the zero natural frequency is classified as the critical flow velocity of the system. 

 

3.1.1 Fixed-Fixed boundary condition. Figure.2 is drawn between the natural frequency (y-axis) of the beam and 

fluid flow velocity (x-axis) entering through it in a high-temperature region. The change in temperature is taken 

as 25 K, the nonlocal parameter is 0.05 and Winkler elastic constant K is taken as 0 MPa.  

We can observe that the points or data obtained here are very close to the available results of Chang [20].  

 

 
Figure 2. Natural frequency v/s flow velocity (At T=25K, e0a/L=0.05, K=0 MPa) 

 
Figure 3. Natural frequency v/s flow velocity (At T=15K, e0a/L=0.05, K=0.1 MPa) 

In Figure 3, the comparison has been carried out between the results through DTM and available results (Chang, 

2012) with a temperature change of 15 K, ea/L at 0.05 and K at 0.1 MPa in low-temperature region. We have 



6

1234567890

ICMAEM-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 225 (2017) 012008 doi:10.1088/1757-899X/225/1/012008

clearly seen a very good agreement between both the methods a very good. We observe that natural frequency 

increases with the increase of Winkler constant. 

After the validation of the results, we have observed that the application of the differential transformation 

method (DTM) gives the values very close to the available results in the literature [20]. 

 

3.2 NEW RESULTS AND DISCUSSION: Simply Supported boundary condition 

3.2.1 Effect of temperature. In Figure 4, a variation of fundamental frequency is drawn in the low-temperature 

region by keeping the value of the nonlocal parameter and elastic force constant at 0.05 and 0 MPa respectively, 

where the coefficient of thermal expansion has negative values. There is an increase in the temperature change 

(from 0K to 35K) which tends to increase the natural frequencies of the single-walled carbon nanotube as well as 

critical flow velocity in the low-temperature region when the flow velocity is lower than the critical flow 

velocity. Moreover, the natural frequency and critical flow velocity are 1.2x10
8
 Hz and 215 m/s which are much 

lower than the fixed-fixed boundary condition (Figure 2) at T=15K.  

 

 
Figure 4. Natural frequency v/s flow velocity (At e0a/L=0.05, K=0.1 MPa) 

 

 
Figure 5. Natural frequency v/s flow velocity (At e0a/L=0.05, K=0.1 MPa) 

 

Figure 5 is drawn with the value of the nonlocal parameter and elastic force constant as 0.05 and 0 MPa 

respectively in the high-temperature region, which means the coefficient of thermal expansion has positive 

values. When the flow velocity is lower than the critical flow velocity, the increase of the temperature change 

(from 0K to 35K) tend to decrease the natural frequencies of the singe-walled carbon nanotube (from 1x108 Hz 
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to 0.4x10
8
 Hz) and critical flow velocity (from 180 m/s to 70 m/s). Moreover, the natural frequency and critical 

flow velocity are much lesser when compared with Figure 2. 

 

3.2.2 Effect of the Nonlocal parameter. Figure 6 is drawn in a high-temperature region which represents the 

variation of the fundamental frequency of fluid conveying single-walled carbon nanotube with flow velocity for 

different values of e0a/L. We observe that the nonlocal parameter (e0/L) increases and natural frequency decrease 

at T=35K and K=0 MPa. Also, the nonlocal parameter (e0/L) increases from 0 to 0.1 at zero flow velocity, 

natural frequency decreases from 0.46 x 10
8
 Hz to 0.35x10

8
 Hz and critical flow velocity reduces from 80 m/s to 

60 m/s. 

 

 
Figure 6. Natural frequency v/s flow velocity (At K=0 MPa, Simply supported B.C). 

 

The variation of e0a/L from 0 to 0.05, have a significant effect on the natural frequency at zero flow velocity but 

does not have very significant effect on critical flow velocity. When dealing with e0a/L=0 the nonlocal beam 

theory reduces to local beam theory. A curve is drawn at T=25K and with e0a/L=0, which corresponds to a local 

beam theory. We clearly observe that in local beam theory the reduction of the natural frequencies and critical 

flow velocities happens when the nonlocal parameter is introduced. 

 

 
Figure 7. Natural frequency v/s flow velocity (At T=0 and K=0 MPa, Simply supported B.C). 

We can observe that the nonlocal parameter (e0/L) increases and natural frequency decrease again. At zero flow 

velocity, the nonlocal parameter (e0/L) is increased from 0 to 0.05, but it does not increase the natural frequency 

so much. If we compare above graph at e0a/L=0.05 from fixed-fixed condition (Figure 3) we notice that the 

natural frequency of later case has a higher value (1.84x10
8
 Hz) than former (1x10

8
 Hz) and critical flow 

velocity has a higher value (210 m/s) than former (170 m/s). The reason is only that the fixed end gives an extra 

stiffness to the beam.  
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4. Conclusion 
This paper presents an analytical model for studying the effects of temperature change, the nonlocal parameter 

on the natural frequency of single-walled carbon nanotube conveying fluid for various boundary conditions.   

Several results are presented on the variation of the fundamental natural frequency of single-walled carbon 

nanotube with flow velocity for various parameter values. It is found that at low or room temperature, the 

fundamental natural frequency and critical flow velocity for the single-walled carbon nanotube increase as the 

temperature change increases, on the contrary, while at high temperature the fundamental natural frequency and 

critical flow velocity for the single-walled carbon nanotube decrease as the temperature change increases.   
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