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Abstract. A sample of Al with grain size of 5.1 µm, prepared by spark plasma sintering, was 

deformed to a nominal strain of 0.35% under exposure to X-ray synchrotron radiation, 

allowing spatially resolved orientation measurements to be made during loading by use of a 

micro-diffraction technique. A significant heterogeneity in the deformation pattern between 

grains was observed. A statistical analysis shows that grain deformation depends more on 

crystallographic orientation than on grain size, with grains with tensile axis lying towards the 

<001>-<101> border of the unit triangle tending to undergo larger deformation. Other possible 

reasons for the different deformation behaviour between individual grains are briefly discussed. 

1.  Introduction 

One reason for the continued demand for aluminium alloys as structural materials is the high strength-

to-weight ratio of these alloys. To achieve further increases in performance without addition of 

expensive alloying elements, one solution is through the reduction of grain size into the near-

micrometre range, where a good balance between strength and ductility may be possible. There are, 

however, still some open questions regarding the relationship between material properties and grain 

size in this regime [1-3]. For a better understanding of the underlying deformation mechanisms in the 

near-micrometre grain-size regime samples with suitable grain sizes and a simple microstructure are 

needed for controlled experiments. 

Traditionally, fine-grained Al materials have been produced using one of several severe plastic 

deformation (SPD) techniques. In each case, however, the resulting microstructure is inevitably in a 

deformed state, with a high dislocation density and a large fraction of low angle boundaries (LABs), 

and the scope for grain size control in the near-micrometre regime by annealing is limited. Recently, 

an alternative approach for the preparation of fine-grained samples, namely spark plasma sintering 

(SPS), has been explored. It has been shown that the SPS technique, originally developed for 

production of ceramic materials, allows the preparation of metallic samples with controlled grain size, 

where the grains have a random texture, and are in a fully recrystallized condition, containing a low 

proportion of LABs [4-6]. This technique is, therefore, well suited for preparation of starting materials 

for research into deformation mechanisms in the near-micrometre grain-size regime. 
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Over the last decade, the possibility for non-destructive three dimensional (3D) microstructural 

characterization has also been realized, and it is been reported that in some cases two dimensional (2D) 

studies are insufficient [7,8] to reveal fully underlying mechanisms. In this work, we present an in situ 

experimental study on an SPS-processed Al sample with a 5.1 µm grain size, where the differential 

aperture X-ray microscopy (DAXM) technique [9,10] is employed for collecting spatially resolved 

diffraction data from the bulk interior with micrometre resolution. The orientation variations within 

grains after deformation to near yielding are analysed in detail, and furthermore, the relationships 

between the grain deformation pattern and both grain size and orientation are also discussed. 

Additionally, a comparison between 2D and 3D orientation characterization is carried out for one 

grain, thereby demonstrating the advantage of 3D analysis in revealing clearly the deformation 

behaviour. 

2.  Experimental 

Pure (99.9%) Al powder with an average powder particle size of 5.7 µm was consolidated by SPS. A 

maximum sintering temperature of 600 °C and a maximum pressure of 50 MPa were used for the 

sintering process, the details of which can be found elsewhere [6]. The as-sintered samples have a 

density of 99% of theoretical density and are in the form of disks with a diameter of 20 mm and a 

height of 4 mm. Dog-bone tensile specimens were cut from the samples by electron discharge 

machining. The gauge length, width and height of the cross gauge section of the tensile specimens 

were 12, 1.8 and 0.6 mm, respectively. Prior to loading, the tensile specimens were mechanically 

polished and then electro-polished to remove machining damage at the surface. 

Synchrotron micro-diffraction experiments were conducted at beamline 34-ID-E at the Advanced 

Photon Source, Argonne National Laboratory [9]. In the experiment, a polychromatic X-ray beam with 

energies in the range of 7-30 keV was focused using two non-dispersive Kirkpatrick-Baez mirrors to a 

size of ~ 0.5 µm. The tensile specimen was mounted on a specially designed tensile device offering a 

nominal strain resolution of ~ 0.05%, then installed at a 45° incident angle towards the X-ray beam. 

The diffraction patterns from the X-ray illuminated volume were recorded on a flat panel detector 

(409.6 × 409.6 mm
2
, 2048 × 2048 pixels, and 16-bit dynamic range) mounted in a 90° reflection 

geometry 510.9 mm above the sample. The detector geometry with respect to the incident beam was 

calibrated using a strain free silicon single crystal. A Pt wire of 100 µm in diameter was used as a 

differential aperture for depth-resolution of the Laue diffraction patterns. Reconstruction and indexing 

of the depth-resolved Laue diffraction patterns were conducted using the LaueGo software at 34-ID-E. 

Reconstructions were performed to a depth of 150 µm into the sample with a depth spacing of 1 µm. 

The focused beam was scanned in a 51 × 5 grid at 1 m step size, resulting in a final 3D data set 

volume of 51 × 5 × 150 µm
3
, with 1 µm

3
 voxel size. 

Data were collected for the same volume of the sample in both the undeformed state and after 

tensile deformation to near the yield point (a nominal strain of 0.35%) at a strain rate of ~ 1 × 10
-4

 /s. 

The stress at this strain, calculated based on the force measured on a load cell attached to the tensile 

loading frame, was determined as 55 MPa. In this paper, only results for the deformed sample will be 

presented. 

3.  Results and discussion 

3.1.  Microstructure 

The microstructure in the characterized volume after deformation to a nominal strain of 0.35% is 

shown in figure 1a. After deformation, the grains in the volume are still nearly equiaxed and the 

orientation variations (seen as colour variations in the figure) within individual grains are very small. 

Individual grains were identified automatically using a clustering algorithm using a critical angle of 

0.2°. In total the examined volume contains 605 grains. The grain size distribution, calculated based 

on inspection of the centre layer of the mapped volume is shown in figure 1b. The average grain size 

(calculated as the equivalent area diameter of each grain in this layer) is about 5.1 µm, which matches 
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well both the starting powder particle size and the grain size measured using electron backscatter 

diffraction (EBSD) on a similar sample [11]. The sample has a random texture (see figure 1c). 

 

Figure 1. (a) Map (Euler angle 

colouring) showing the 3D 

microstructure of the characterized 

volume (51, 5 and 150 µm along X, 

Y and Z axis, respectively) after 

deformation to a nominal strain of 

0.35%. The beamline coordinates (X 

Y Z) and the sample coordinates (X 

H F) are both defined. The 

crystallographic orientations are 

defined in the sample coordinate 

system. The two grains highlighted 

by circles are analysed in detail in 

section 3.2; (b) grain size distribution 

and (c) {100} pole figure of the 

characterized volume (colouring 

corresponding to the grains in (a)). 

3.2.  Deformation pattern within individual grains 

At strain of 0.35%, orientation variations are seen within individual grains. Two grains of similar size 

chosen for more detailed analysis are indicated by the black-dotted and white-solid circles in figure 1a. 

As the orientation variation is very small at this strain, typically ~ 0.05°, the orientation data are 

examined using reference orientation maps based on the grain average orientation after deformation. 

For these maps the misorientation between each voxel and the average orientation of the grain in 

which it lies is first calculated in the sample reference frame as an angle:axis pair, and then the results 

plotted separately for the misorientation angle component (also referred to here as the deviation angle) 

and the misorientation axis component. It has been shown elsewhere [12] that such maps, in particular 

the sample-frame misorientation axis map, can be very sensitive to small systematic variations in 

orientation. 

The results are shown in figure 2. For grain G1, an angle deviation of up to 0.2° to the average 

orientation is seen after deformation (see figure 2a and 3a), and the misorientation rotation axes 

change gradually and continually from one side of grain G1 to the other side (see figure 2b). In 

contrast, a different deformation pattern is seen for grain G2. For this grain two distinct regions of 

different colours are seen in the misorientation rotation axes, implying that grain G2 has subdivided 

into two parts after deformation. 

The distributions of deviation angle to the average orientation for all voxels in grains G1 and G2 

are shown in figures 3a and 3c, respectively. An evident difference is seen between the two 

distributions, which is directly related to the different deformation patterns seen in figure 2. The 

distributions of neighbour voxel misorientations for the two grains are, however, relatively similar 

(figure 3b and 3d). The grain orientation spread (defined as the arithmetic mean of the deviation 

angles between the orientation of each voxels and the average grain orientation) for grains G1 and G2 

are 0.08° and 0.07°, respectively, while the grain average misorientation (defined as the arithmetic 

mean of the misorientation angles between all pairs of nearest neighbour voxels in each grain) is 0.04° 

for both grains G1 and G2. 
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Figure 2. 3D plots of grain G1 and 

G2 (marked by the white-solid and 

black-dashed circles, respectively in 

figure 1a), showing the microstructure 

after deformation to a nominal strain 

of 0.35%. The colouring is based on 

the misorientation between each voxel 

orientation and the grain average 

orientation after deformation. (a) 

Misorientation angle component; (b) 

misorientation rotation axis 

component, expressed in the sample 

coordinate system. The scale bar for 

the misorientation angle and colour 

code for the misorientation rotation 

axis are given. 

 
Figure 3. Orientation variation for all voxels in grains G1 and G2. (a) Deviation angle 

between each voxel orientation and the average orientation for grain G1; (b) 

misorientation angles between nearest-neighbour voxel pairs in grain G1; (c) - (d) are the 

corresponding distributions of the two parameters for grain G2. 

3.3.  Comparison between 2D and 3D measurements 

The DAXM technique probes the spatially resolved orientation of the sampled volume, however, most 

frequently used characterization techniques are performed in 2D. Thus interest arises as to how much 

difference there is between the 2D and 3D measurements. As mentioned in section 3.1, a layer based 

analysis from a 3D volume is comparable to an EBSD measurement. In this section, grain G2 is used 

to demonstrate possible differences between 2D and 3D orientation analysis. 

For this demonstration the grain was analysed layer-by-layer. In each layer a calculation was made 

of the misorientation between the voxel orientations and the average orientation of the grain based 

only on the measurement in the layer. A quasi-3D data set was then obtained by recombining the data 

for all layers. For grain G2, the layer based orientation analysis shows smaller deviation angles 

compared to the volume based result (see figure 4a and 2a), with a mean values of 0.04° and 0.07°, 

respectively. Moreover, instead of a clearly observed grain subdivision along the Y axis, as seen in 
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figure 2b, the layer based misorientation rotation axis map shows a weaker more gradual change of 

orientation, predominantly along the Z axis (see figure 4b). 

For a better demonstration of the differences between the 2D and 3D results, a locally magnified 

view of one pole of a {100} pole figure for grain G2 is plotted by the two methods (see figure 4c and 

4d), with the size and colour of each point representing the deviation angle and misorientation rotation 

axis of the corresponding voxel. A clear difference between the patterns of subdivision can be seen, 

indicated by the clusters of points with similar colouring, as can the larger deviation angles of the 3D 

results compared to the 2D analysis. The analysis highlights the fact that 2D data, particularly at low 

plastic strain and in fine grains, can give misleading or incomplete information about the real pattern 

of grain subdivision. 

 

Figure 4. Layer based orientation variation 

analysis for grain G2 showing (a) 

misorientation angle component, and  (b) 

misorientation rotation axis (sample 

coordinate system) component; (c) magnified 

region of a {100} pole figure, with colouring 

using the same definition as (b) and where the 

point size represents the misorientation angle 

component. The grain average orientation is 

highlighted by the black circle, and the scale 

bar corresponds to the point size; (d) 

corresponding magnified pole figure for the 

same grain according to the volume based 

orientation variation result (shown in figure 

2). The red and blue circles in (c) and (d) 

indicate two clusters of voxels with similar 

colour, i.e. misorientation rotation axis. 

3.4.  Deformation behaviour of all grains 

In order to assess the variation in deformation behaviour for all the grains in the sampled volume, the 

grain orientation spread and grain average misorientation have been calculated for each grain and are 

plotted as a function of grain volume in figures 5a and 5b, respectively. A general tendency is seen for 

larger grains to have a larger grain orientation spread (see figure 5a), although some smaller grains 

also show a large grain orientation spread. As discussed in [13] this result may arise from a correlation 

between grain orientation spread and grain size, resulting from the presence of in-grain orientation 

gradients. In contrast, as shown in figure 5b, the grain average misorientations for large grains are 

similar to those for small grains, i.e. grain average misorientation does not depend on grain size. The 

grain average misorientation therefore provides a better estimation of the deformation of individual 

grains, although it should be noted that the absolute value of this parameter is step-size dependent. 

Using this parameter the effect of crystallographic orientation on the deformation has been 

examined. Figure 5c shows the orientations of the grains having relatively large grain average 

misorientations (> 0.09°). The figure shows that in general these grains have no preferential 

orientation. However, it appears that grains with orientations in the lower part of the unit triangle, i.e. 

in the region towards the <001>-<101> border, have comparatively larger average misorientations 

than those with orientation close to the <111> corner.  

Besides the crystallographic orientation, several other factors may be important for the deformation 

differences between individual grains, such as the grain shape, the influence of neighbouring grains, 

and the initial dislocation density in the undeformed state. These factors will be investigated in detail 

in the future using both experimental and computational (e.g. crystal plasticity finite element 

modelling) approaches. 
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Figure 5. (a) Grain orientation spread and (b) grain average misorientation as a function 

of grain volume for all 605 grains in the characterized volume. (c) Crystallographic 

orientations along the tensile direction (H axis in figure 1a) for grains with an average 

misorientation larger than 0.09°; the colour of each point represents the average 

misorientation angle of the corresponding grain. 

4.  Summary 

The results show that the 3D X-ray diffraction microscopy technique is a very powerful tool for 

investigation of deformation microstructure, allowing non-destructive orientation measurements with a 

spatial resolution of 1 µm and an angular resolution of 0.01°. This combination of characteristics 

allows for the first time a study of deformation at very low strain in aluminium with near-micrometre 

grain size. The results show a heterogeneity in the deformation pattern, as quantified by the grain 

average misorientation. Based on this parameter it is found that grain deformation in this near-

micrometre grain-size regime depends more on crystallographic orientation than on grain size, with a 

weak tendency for grains lying towards the <001>-<101> border of the unit triangle to undergo larger 

deformation. A comparison between layer based and volume based orientation variation analysis 

highlights the advantage of 3D measurements for revealing the pattern of grain subdivision. 
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