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Abstract. Samples of commercially pure aluminum were subjected to equal channel angular 
extrusion (ECAE) using a 90° square die by routes A and C, where the specimens are not 
rotated and are rotated 180° between extrusion passes, respectively. Qualitatively similar 
anisotropic responses under compressive loading along the three orthogonal directions of the 
ECAE billet are seen in both cases. The plastic anisotropy is related to the effect of strain-path 
change, namely that different slip activities are induced for specimens loaded along different 
directions with respect to the last ECAE pass. The anisotropic mechanical behavior is more 
evident in the sample deformed by route C. Considering the shear patterns imposed in each 
ECAE route, the characteristics of dislocations introduced in ECAE should affect the 
mechanical response in post-ECAE loading. It is suggested that during the ECAE process, 
dislocations on fewer slip systems are activated in route C than in route A, and therefore, a 
stronger plastic anisotropy results in this sample. The as-ECAE specimens were also heat 
treated to achieve a recovery-annealed state. The plastic anisotropy persists in the annealed 
specimens to slightly reduced extent, which can be ascribed to partial annihilation of pre-
existing dislocations.  

1.  Introduction 
It has been well established in the past two decades that metals with ultrafine-grained (UFG) structures 
can be generated by the use of equal channel angular extrusion (ECAE) [1-3]. After processing by 
ECAE at ambient temperature, the microstructures of most alloys are quite complex. The morphology 
of the subgrains/grains constituting the microstructure may vary from lamellar to polyhedral shape [3-
5]. The boundaries separating neighboring subgrains/grains are mixtures of segments with 
misorientation angles ranging from low to high angles, and the boundary structure can vary from 
dislocation walls (DW), to partially transformed boundaries (PTB) and to grain boundaries (GB) [4]. It 
was found that low temperature annealing can be applied to slightly tailor the grain size and boundary 
structure of UFG metals produced by ECAE, in which annealing is carried out at a temperature below 
the onset of recrystallization [6, 7]. 

According to Yu et al. [8], an evident transition of tensile behavior appears as the grain size is 
reduced from the micrometer to submicrometer range in aluminum. It was proposed that as the grain 
size decreases below a critical value, which may correspond to the cell size, the mean free path of 
dislocations is no longer determined by the dislocation structure, but is limited by the grain boundaries 
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[8-11]. This causes an enhancement of dynamic recovery as well as a reduction of work hardening in 
UFG metals, and consequently leads to reduced tensile elongation [8]. The boundary structure was 
shown to play an important role in the tensile behavior of UFG aluminum [12]. Quasistatic tests 
revealed an increase in ductility with an increase in the percentage of low-angle boundaries [12]. 

In the ECAE process metals are deformed via a nearly simple shear [13], which imparts substantial 
texture and microstructure evolution. In multiple ECAE passes, the processing route and number of 
passes influence the microstructure and texture development, and thus affect the mechanical properties 
of the product. Anisotropy in initial flow stress and work-hardening have been reported in metals 
deformed by ECAE [14-20]. As the last pass in the process of multiple-pass ECAE treatments is 
believed to be most influential on properties of the processed materials, a knowledge of the anisotropic 
properties of materials processed by single-pass ECAE should facilitate the understanding of multi-
passed materials. Work done on the anisotropic mechanical properties of aluminum processed by 
ECAE has mainly been focused on that deformed by single pass ECAE, while relatively little work 
has been done on aluminum processed by multiple pass ECAE [18-20]. The work of Haouaoui et al. 
[14] reveals that copper subjected to only one ECAE pass can result in both tensile and compressive 
yield stresses decreasing following the order of along Y-axis (perpendicular to the flow plane) > along 
Z-axis (normal to the top surface at the point of exit) > along X-axis (the extrusion direction). Strain-
path change (SPC) is involved in uniaxial tension or compression tests of materials pre-deformed by 
ECAE. According to Li [17], SPC is an important factor, in addition to texture, to be considered in 
interpreting the plastic responses of ECAE processed metals subjected to uniaxial loading. 

Compared to single-pass ECAE-processed materials, multiple-pass processed counterparts are 
expected to possess quite different texture and microstructure, which may be strongly affected by 
material, die angle, processing route, and number of passes used in the deformation process. Horita et 
al. [18] used AA1100 commercially pure aluminum, deformed by ECAE route Bc for 6 passes, and 
the yield stress decreased following the order of X-axis > Y-axis > Z-axis. Beyerlein et al. [19] 
employed oxygen-free pure copper and pure aluminum to study the anisotropic mechanical behavior 
of the as-ECAE samples, and found that the order of flow stresses among the three directions evolves 
similarly with pass number in the two materials. After the first pass, it is in the order of Y-axis > Z-
axis > X-axis and after subsequent passes, Y-axis > X-axis ≈ Z-axis. It should be noted that single-
pass processed materials was considered as plastically deformed coarse-grained materials, while 
multi-pass processed materials have UFG structures, which may behave quite differently from coarse-
grained materials. 

This work aims at understanding the anisotropic mechanical behavior of UFG aluminum produced 
by ECAE. Samples of commercial purity aluminum processed by ECAE routes A and C were 
investigated, both in the as-ECAE state and in a low temperature annealed state. The microstructures 
produced by ECAE routes A and C are distinctly different because these two routes provide plastic 
deformation via different shear patterns [21]. In particular, aluminum processed by ECAE route A 
possesses higher proportion of high angle boundaries (HABs) than route C (67% versus 35% [22]), 
which has been shown to play an important role in tensile behavior of UFG aluminum [12]. Therefore, 
a comparison between aluminum processed by ECAE routes A and C should improve our 
understanding of the effect of boundary structure on the anisotropic mechanical responses of UFG 
aluminum. Moreover, most of the studies reported in the literature on the anisotropic properties of 
ECAE metals are focused on the as-ECAE condition. A direct comparison between the results of a 
recovery annealed and as-ECAE counterpart can help to elucidate the influence of the residual 
dislocations on the anisotropic mechanical response of ECAE processed aluminum.  

2.  Experimental 
A sample of commercially pure aluminum, AA1050, was homogenized at 873 K for 12 hours and 
slowly cooled to room temperature in air. The resulting average grain size was 330 μm. Rectangular 
billets were used for ECAE process. Billets were then subjected to ECAE route A or route C in a 90° 
square die. Billets were subjected to eight passes, giving an accumulated von Mises strain of ≈ 8.4. All 
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extrusions were performed at room temperature. A detailed description of the ECAE processing used 
for these samples can be found in a previous paper [3]. Recovery annealing was conducted at 523 K 
for 1 hour after ECAE. In the following text, A and C will refer to samples processed by route A and 
route C in the as-ECAE state, respectively, while the annealed counterparts will be denoted as AR and 
CR. The ECAE extrusion direction is defined as the X-axis, the flow plane normal is designated as the 
Y-axis, and the Z-axis is normal to both the X- and Y-axes. 

The grain size of the specimens was measured on thin foils sectioned from all three orthogonal 
planes (the X-, Y, and Z-planes) using a transmission electron microscope (TEM) (Philips CM200) 
operated at 200 kV. The grain size of each grain is defined as the diameter of an equivalent circle with 
the same area as the grain. Additionally, due to the formation of elongated grains after ECAE, the 
grain shape was described by its length and width. Ellipses were used to fit every grain. The lengths of 
the long and short axes of the best fitting ellipse represent the grain length and width, respectively.  

Samples for compression tests were sectioned to have dimensions of 6 × 4 × 4 mm3 from the center 
of the as-ECAE billets, in which the long axis was parallel to the loading direction (either the X-, Y- or 
Z-axis). Samples were ground and polished to have smooth surfaces prior to compression testing. 
Compression tests along all three loading directions were conducted at an initial strain rate of 7.1 × 
10-4 s-1 at room temperature by using an Instron 5582 universal testing machine. Duplicate tests were 
conducted for all conditions to assure reproducibility. The sample surfaces were observed in a 
stereomicroscope and a HITACHI S3000 scanning electron microscope (SEM) at 15 kV after 
compression testing. 

 

3.  Results 

3.1.  Microstructure  
The boundary character and texture of the same material after processing by ECAE route A and C for 
8 passes have been reported in previous papers [3, 22]. The microstructural characteristics of the A 
and C specimens are summarized here. The texture of the as-ECAE specimen was observed to persist 
after annealing up to grain sizes greater than 10 m in this material [6]. Therefore, the texture of the 
annealed specimens (AR and CR) is believed to be similar to that of the as-ECAE counterpart. 
Aluminum processed by 8 ECAE passes with either route A or route C exhibits similar 
crystallographic texture [22], which has the same characteristics of single-pass processed aluminum 
[23]. Texture strengths calculated from orientation distribution functions (ODFs) for A and C are 1.58 
and 1.38, respectively, implying moderately weak textures [22, 24]. 

High angle boundaries are defined as boundaries with misorientation angles greater than 15° while 
low angle boundaries (LABs) have misorientation angles smaller than 15°. The aluminum processed 
by ECAE route A possesses higher proportion of HABs than route C (67% versus 35% [3, 22]). The 
experimental results from our previous work indicate that the ECAE samples annealed at 523K for 4 
hours show similar proportion of HABs to that of the as-ECAE state [6]. Therefore, this indicates that 
the HAB% remains unchanged in both A and C specimens after annealed at 523K for one hour. 

The microstructures of A, C, AR and CR were examined on the three orthogonal planes by using 
TEM and the results are given in figures 1-3. The quantitative results of the grain size and shape are 
summarized in table 1. Grains in specimen A exhibit mainly elongated shape on the X- or Y-plane but 
roughly equiaxed shape on the Z-plane. Based on the grain morphology on the three orthogonal planes, 
the grains in sample A can be considered as pancake (or disc) shape with the face approximately 
parallel to the Z-plane. The majority of grains in sample C are roughly equiaxed (aspect ratio ~ 2) on 
all three planes (table 1). The grains in sample A were measured to be slightly smaller than those in 
sample C. In both samples A and C, obvious diffraction contrast variation appears within the grain 
interior, which indicates the presence of considerable amount of defects and internal stresses in the as-
ECAE condition (figure 1).  
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Figure 1. TEM micrographs of (a) specimen A and (b) specimen C on the Y-plane. 

 

 
Figure 2. TEM micrographs on the (a) X, (b) Y and (c) Z planes for the AR specimen. 
 

 
Figure 3. TEM micrographs on the (a) X, (b) Y and (c) Z planes for the CR specimen.  
 

Table 1. Quantitative microstructural parameters obtained from measurements on the three orthogonal 
planes for each sample.  
material X-plane Y-plane  Z-plane D (m) 

dX (m) RX dY (m) RY dZ (m) RZ 
A 0.54±0.21 [3] 2.56 0.56±0.26 [3] 2.71 0.68±0.39 1.82 0.59 
C 0.68±0.29 [3] 2.08 0.61±0.30 [3] 1.89 0.70±0.40 1.67 0.66 
AR 0.64±0.28 1.90 0.64±0.25 1.92 0.94±0.44 1.53 0.73 
CR 0.76±0.38 2.00 0.71±0.38 1.68 0.94±0.45 1.56 0.80 
*D = (dXdYdZ)1/3, where dX, dY, and dZ are grain sizes measured on the three orthogonal planes. Grain 
size is defined as the equivalent circle diameter. Grain aspect ratio, R, is defined as the ratio of grain 
length over width. 

 
After annealing, the grain structures in the AR and CR are more comparable, in which the majority 

of grains in both specimens have equiaxed shape (figures 2 and 3). The average grain size in sample 
CR is slightly larger than that in sample AR (table 1). As compared to samples A and C, the 
diffraction contrast in samples AR and CR is more uniform, indicating defect density and internal 
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stresses are substantially reduced. Additionally, most of the grains in samples AR and CR are enclosed 
by boundaries with clear grain boundary fringes (figures 2 and 3). 

3.2.  Compression tests  
The true stress-strain curves obtained from compression tests along three loading directions of the 
specimens are presented in figure 4. The results indicate that specimen A has higher yield stress and 
flow stress than specimen C in all three loading directions. Compressive yield stresses along the three 
loading directions are found to be follow the order of Y-axis > Z-axis > X-axis in both the A and C 
specimens, and the differences in yield stresses are observed to be more significant in sample C than in 
sample A. The as-ECAE specimens exhibit slight work-softening when testing in both the X- and Y-
directions, but slight hardening in the Z-direction. 

The annealed samples, AR and CR, show reduced yield and flow stresses as compared to the as-
ECAE counterparts (figure 4). Similar to the as-ECAE samples, specimen AR has higher yield stress 
and flow stress than specimen CR due to the smaller grain size and higher fraction of HABs in the AR 
specimen. The flow curves of the AR specimen display the “yielding peak” phenomenon in all three 
loading directions. On the other hand, the yielding peak is less evident in specimen CR, and can only 
be observed in the Y-direction. Yield stresses along the three loading directions are determined to 
follow the order of Y-axis > Z-axis > X-axis in specimen AR, while they follow the order of Y-axis ≈ 
Z-axis > X-axis in specimen CR. The differences in yield/flow stress become less significant in the 
annealed specimens as compared to their as-deformed states. A “yielding peak” only occurs in the 
annealed state, and is more evident in the AR sample than in the CR sample. In terms of loading 
direction, it is most apparent in the Y-direction. 

 
 Figure 4. Compressive true stress-strain curves for specimens, (a) A, (b) C, (c) AR and (d) CR, 
deformed along three orthogonal directions. 

3.3.  Shear bands 
After compression tests, the as-ECAE specimens show a uniform distribution of fine slip traces, while 
the annealed specimens exhibit distinct bands of flow localization (shear bands). The appearance of 
shear bands in the annealed specimens also depends on the processing route and the loading direction. 
Both the AR and CR specimens have similar orientations of shear bands with respect to the loading 
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direction, but the shear bands are fainter in specimen CR. Specimen AR compressed along the X-
direction only exhibits one set of shear bands on the Z-plane, which is parallel to the Y-axis, while two 
sets of shear bands are aligned at angles of approximately ±45° to the X-axis on the Y-plane (figure 5a). 
Two sets of shear bands aligned at approximately ±45° to the Y-axis were observed on the X-plane 
when the specimens were compressed along Y-axis (figure 5b and 5c). However, there is only one set 
of shear bands observed on the Z-plane in specimens compressed along the Y-direction, which is 
approximately parallel to the X-axis (figure 5b). For specimens compressed along the Z-axis, weak 
signs of shear bands are observed, which can be better described as a distribution of fine slip lines. 
 

 
 
Figure 5.  Micrographs showing shear bands on the sample surfaces after compression tests in the AR 
specimen. (a) Optical micrograph of the Y- and Z- planes of specimen compressed along X-axis, (b) 
optical micrograph of the X- and Z- planes of the specimen compressed along the Y-axis, and (c) SEM 
micrograph showing two sets of shear bands on the X-plane of specimen compressed along the Y-axis.  
 

4.  Discussion 

4.1.  Effect of ECAE route (strain-path change) and annealing on the compression behavior 
The occurrence of higher yield and flow stresses in specimen A than C is attributed to the smaller 
grain size and higher proportion of HABs in specimen A. Metals with smaller grain sizes are 
considered to have higher strength according to the Hall-Petch relationship. However, the grain size 
effect was found to contribute only 5 MPa to yield stress in A and C specimens from the Hall-Petch 
slope in this aluminum [8]. The difference in yield stress between samples A and C far surpasses 5 
MPa. It is therefore suggested that boundary structure in addition to grain size has a considerable 
contribution to the strength of this UFG aluminum. Specimen C consists of mainly LABs, which are 
weaker barriers to dislocation propagation, and consequently result in lower yield stress. 

Several factors can affect the anisotropic mechanical response of aluminum, such as texture, grain 
boundary structure and grain shape. The textures of the two specimens are found to be similar [22] and 
therefore, the cause of texture can be excluded. The directionality in microstructure might be another 
possible cause responsible for the anisotropic mechanical behavior. Specimen C has more equiaxed 
grains surrounded by mainly LABs and some randomly distributed HABs, while specimen A has 
elongated grains with high proportion of HABs, which are aligned mainly along the X-axis. If the 
aforementioned factor is the major cause for the anisotropic mechanical response, specimen A should 
have more pronounced directionality in mechanical behavior. However, the anisotropic behavior is 
more evident in specimen C. Thus, this proposition could also be ruled out. In mechanical testing, 
ECAE specimens experience a strain-path change with respect to the previous strain imposed in the 
ECAE process. It is possible that the anisotropic flow responses could be related to this strain-path 
change [17, 19]. A more detailed discussion is given in section 4.2. 

The occurrence of yielding peak is attributed to the shortage of mobile dislocations, which in turn 
requires a higher dislocation velocity to satisfy the applied strain rate [25]. It has been shown that UFG 
aluminum with smaller sizes and low dislocation densities [8] exhibits a significant yielding peak 
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phenomenon. The absence of yielding peaks on the as-ECAE specimens indicates the existence of 
sufficient mobile dislocations. However, the annealed specimens, AR and CR, exhibit yielding peaks. 
From the microstructural examinations of the AR and CR specimens, the diffraction contrast is 
observed to be more uniform than in the as-ECAE state, A and C specimens, indicating defect density 
and internal stresses are substantially reduced in the annealed state (figures 1 to 3). Therefore, a high 
dislocation velocity is required to fulfil the applied strain rate and results in yielding peak [8, 25]. 

4.2.  Relation between plastic anisotropy and the shear patterns in ECAE 
Shear bands are observed in the annealed specimens in conjunction with the presence of yielding 
peaks (figure 5). Shear banding is a common feature in UFG metals during mechanical testing, both 
tensile and compressive, and result from flow localization [8, 26]. The development of shear bands in 
UFG metals can be related to its inherent low work-hardening rate. Low temperature annealing can 
only cause partial recovery of the dislocation structure produced by ECAE. The following shear 
deformation imposed in ECAE can still affect anisotropic flow localization in the annealed specimens. 

 A shear strain XZ is imposed in each ECAE pass to the material. In route A, deformation occurs on 
two slip planes alternately in consecutive passes, while in route C deformation occurs on one shear 
plane with opposite shear direction in consecutive passes. Shear bands on specimens compressed 
along the X-direction have the same orientations as the shear planes in ECAE route A. However, 
compression along the X-direction reverses the stress direction applied during ECAE, and can result in 
a Bauschinger effect [14] to reduce the yield stress along the X-axis. Consequently, the yield stress is 
the lowest among the three orthogonal directions. Compression along the Y-direction results in a shear 
band orientation distinctly different from the shear planes generated in ECAE, and accordingly, new 
dislocations driven by different stress components need to be activated and a higher flow stress is 
required. This results in the highest yield/flow stress in the Y-axis among the three directions, an effect 
of strain path-change suggested by Beyerlein et al. [19]. For specimens compressed along the Z-axis, 
the maximum shear stress occurs on the same shear plane and direction as those operated in ECAE, 
and therefore, the yield stress is intermediate among the three orthogonal directions.  

The stronger anisotropic response in specimen C compared to A is considered to be related to 
deformation occurring on single shear plane during the ECAE route C process. The shear direction is 
continuously reversed on the same shear plane during consecutive extrusions in route C. However, 
deformation is imposed on two shear planes and four shear directions in the ECAE route A process 
[21]. It is therefore suggested that during the ECAE process, dislocations on fewer slip systems are 
activated in route C than in route A. For compression tests along different loading directions of ECAE 
processed materials, dislocations on different slip systems should be activated to accommodate the 
applied strain. The characteristics of dislocations introduced in ECAE can affect the mechanical 
response in post-ECAE loading. Due to the activation of fewer dislocation slip systems in specimen C, 
a stronger anisotropic mechanical behavior is expected in specimen C than A. The anisotropy in 
mechanical response is reduced after annealing, which can be ascribed to partial annihilation of the 
pre-existing dislocations. Specimen CR has fewer activated dislocations left from ECAE and new 
dislocations are generated during the following compression tests along all three orthogonal directions, 
resulting in similar yield/flow stresses along the three directions. 

5.  Conclusions 
In this work, the anisotropy of mechanical response of AA1050 processed by ECAE routes A and C 
has been investigated in the as-processed and recovered conditions. The main results are listed below. 

(1) Specimens A and AR exhibit higher strength than specimens C and CR due to the smaller grain 
size and higher fraction of HABs in specimens A and AR. 

(2) Specimens produced by both ECAE routes show qualitatively similar anisotropic responses 
under compressive loading along the three orthogonal directions of the ECAE billet. The yield stress is 
the highest in compressive testing along the Y-direction, while the lowest value of yield stress appears 
in testing along the X-direction. The differences can be related to the effect of strain-path change, 
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namely that different slip system activities are induced for specimens loaded along different directions 
with respect to the last ECAE pass. 

(3) The plastic anisotropy in specimen A less than that in specimen C. This difference can be 
explained by the deformation occurring on single shear plane and two shear directions during ECAE 
route C, while the deformation is imposed on two shear planes and four shear directions in route A. It 
is then expected that during ECAE process, dislocations on fewer slip systems are activated in route C 
than in route A. As the characteristics of the dislocations introduced in ECAE may affect the 
mechanical response in post-ECAE loading then because fewer dislocation slip systems are activated 
in route C, a stronger anisotropy in mechanical behavior is expected in specimen C than in A. 

(4) The plastic anisotropy persists in the annealed specimens, AR and CR, but to a reduced extent. 
The reduced anisotropy in mechanical response after annealing can be ascribed to the annihilation of 
pre-existing dislocations resulting from the ECAE process. 

(5) Shear bands are observed in annealed specimens in conjunction with the presence of a yielding 
peak. Both the AR and CR specimens have similar orientations of shear bands with respect to the 
loading direction, but the shear bands are weaker in the CR specimen. 
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