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Abstract. The vibration signals produced by rotating machinery contain useful information for 

condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. 

Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time 

and frequency information in the signals and served as a de-noising method. The CWT scaling 

function gives different resolutions to the discretely signals such as very fine resolution at lower 

scale but coarser resolution at a higher scale. However, the computational cost increased as it 

needs to produce different signal resolutions. DWT has better low computation cost as the 

dilation function allowed the signals to be decomposed through a tree of low and high pass filters 

and no further analysing the high-frequency components. In this paper, a method for bearing 

faults identification is presented by combing Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The 

experimental data was sampled by Case Western Reserve University. The analysis result showed 

that the proposed method is effective in bearing faults detection, identify the exact fault’s 

location and severity assessment especially for the inner race and outer race faults. 

1. Introduction 

Rolling element bearings are classified as the most important and most common component in rotating 

machinery [1]. It is reported that failure in machinery is commonly caused by the faulty bearings. Figures 

show that faults in bearing causes approximately 45% in machine breakdown and 40% of problems in 

rotating machinery [2].  In today’s industries, the faults diagnosis of the rotating machinery is becoming 

a challenging problem and it has gained the attention from worldwide as it is realized that the early faults 

detection is essential for proper maintenance and prevent catastrophic failures. Therefore, research on 

the fault diagnosis and fault detection are still ongoing and they are gaining wide attention to prevent 

sudden failures. 

 

The vibration signals and acoustics emission (AE) is the most commonly used techniques in 

condition monitoring and diagnosis of rotating machinery. The possibility of machinery failure such as 

mass unbalance, shaft misalignment, gear failures and bearing defects could be detected using vibration 

signals of a machine operating either in good or faulty condition [3]. The vibration signals contain rich 

information and it has been widely used for condition monitoring without interfering the machine 

operations. So, the vibrations signal are favoured to become the common approach for rotating 

machinery condition monitoring and fault diagnosis [4]. 
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Vibration signals of the bearing could be classified into stationary and non-stationary signals. In reality, 

the signal of the bearing is always non-stationary due to the dynamic as the load and speed condition 

varies over time. The non-stationary signals are somehow treated at stationary signals for short time 

window method for the ease of computation. The non-stationary signals are complex and associated 

with a lot of noises. This has caused difficulties in determining the bearing faults by conventional time 

domain and frequency domain methods which assume that the signal is strictly periodic for analysis [5]. 

The time-domain features are good for fault detection but weaker fault isolation as compared to the 

frequency-domain features [6]. The needs for effective detection of the non-stationary signal is getting 

more demanding to prevent the sudden machine failures. Therefore, various signal processing 

techniques have been developed to overcome the problem. 

 

Time domain features represent the vibration signal in the function of time where the amplitude of 

the waveform is plotted over time. It represents the proximity, velocity, and acceleration of the vibration 

signal. It is favourable to be used for fault diagnosis due to the advantages of a minimum data loss prior 

the inspection [7]. The time domain features mainly focus on the statistical characteristic of the vibration 

signal such as the peak level, standard deviation, skewness etc. The disadvantage of the time domain is 

the possibility of using too much data for easy and clear fault diagnosis [8]. 

 

In frequency domain analysis, the Fast Fourier Transform (FFT) transform the signals very quickly 

and gives the same result as the slower Discrete Fourier Transform (DFT) [9]. The limitation of this 

approach is that it is not able to analyse the non-stationary signals [10]. The Short Time Fourier 

Transform is then developed to overcome the limitation of FFT. The STFT is only applicable to analyse 

the quasi-stationary signals that are stationary at the short time window scale but not applicable to 

analyse highly transient phenomena in signals, such as impulse [11]. SFTF is inherently not able to 

determine time-dependent variation in the structure of the window at various scale [12]. For time-

frequency analysis, The Empirical Mode Decomposition (EMD) is gaining the attention of the 

researchers due to its ability of decomposing non-linear or non-stationary signal into a series of zero-

mean amplitude-modulation frequency-modulation (AM-FM) [13]. However, some researchers stated 

that The EDM is mainly to qualitative diagnosis that focusing on the type of severity of the faults but 

not the quantitative aspect such as the defect size [14]. Wavelet Transform (WT) has been introduced 

as an effective tool for machinery fault diagnosis. Wavelet itself is not a new theory as it is made up by 

combining many existing, well-known and independent signal processing techniques such as sub-band 

coding, quadrature mirror filter, etc. Due to the wide application, wavelet theory is becoming more 

active in the research fields as it is capable of further improvement in both the mathematical 

understanding and the wide range of applications in science and engineering [15-17]. The major merits 

of wavelet are that it is suitable for wideband signals that are not periodic and may contain both 

sinusoidal and impulse components. It has the ability to analyse the singularities and irregular signal 

structure and provides an excellent frequency resolution of the spectra, the variance of estimated power 

spectra and complexity [18]. 

 

In this paper, a method for bearing faults detection is formulated by combing CWT and DWT with 

envelope analysis. The WT was employed as a de-noising process to filter out the other frequencies than 

the resonance frequency band. This served as a standard reference to centre the band-pass filter for 

envelope analysis. So, by knowing the exact location of filtering, this would be a better approach to 

predict the fault severities using the frequency analysis. 

2. Background Theory 

An antifriction bearing consists of different components such as outer race, inner race, rolling element, 

and the cage was considered in this study. The inner race is strongly mounted to the shaft to rotate in the 

shaft speed with the outer race stay stationary during operation while the rolling elements and cage are 

rotating or spinning at their own speed. In fault diagnosis, the rolling elements play a big role in the 

frequency recognition where unique frequency will be generated by the faulty component when the 

rolling elements rolled pass through the fault location. The derivation of the equations measuring the 

frequency of defective component is based on the relationship between the rotating elements of a bearing 
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and the relative rotating speed. A defective bearing in a running machine can generate at least five 

frequencies [19], these frequencies are as following: 

a) FTF - Fundamental Train Frequency. It is also known as the frequency of the defected cage: 

 𝑓(𝐻𝑧) =
1

2
𝑠 [
𝐵𝐷

𝑃𝐷
𝑐𝑜𝑠𝛽] (1) 

b) BPFI - Bass Pass Frequency of the Inner Race. This is the frequency that produced during the rolling 

elements roll across the defected inner race: 

 𝑓(𝐻𝑧) =
𝑛

2
𝑠 [1 +

𝐵𝐷

𝑃𝐷
𝑐𝑜𝑠𝛽] (2) 

c) BPFO – Bass Pass Frequency of Outer Race. This is the frequency that produced during the rolling 

elements roll across the defected outer race.  

 𝑓(𝐻𝑧) =
𝑛

2
𝑠 [1 −

𝐵𝐷

𝑃𝐷
𝑐𝑜𝑠𝛽] (3) 

d) BSF – Ball Spin Frequency. This is the circular frequency of each rolling elements. 

 
𝑓(𝐻𝑧) =

𝑃𝐷

2 × 𝐵𝐷
𝑠 [1 − (

𝐵𝐷

𝑃𝐷
𝑐𝑜𝑠𝛽)

2

] (4) 

e) Rolling Element Defect Frequency. This frequency is twice the BSF. 

 
𝑓(𝐻𝑧) =

𝑃𝐷

𝐵𝐷
𝑠 [1 − (

𝐵𝐷

𝑃𝐷
𝑐𝑜𝑠𝛽)

2

] (5) 

 

where s is speed (revolutions per minute), n is the number of the rolling elements, 𝛽 is contact angle 

(degrees), BD is ball or roller diameter and PD is Pitch diameter. In this paper, the contact angle is zero 

degree. 

3. Signals Analysis Techniques 

3.1. Continuous Wavelet Transform 

Wavelet Transform is a revolution from the Fast Fourier Transform (FFT). The multi-resolution of time-

frequency analysis has resolved the limitation of FFT. Consider a function ψ having complex-valued 

satisfying the following conditions: 

 ∫ |ψ(t)|2dt < ∞
∞

−∞

 (6) 

 
CΨ = 2π∫

|Ψ(ω)|2

|ω|
dω < ∞

∞

−∞

 (7) 

where Ψ is defined as the Fourier transform of ψ. The first condition represents the finite energy of the 

function ψ. The second condition is the admissibility condition, it represents that if Ψ(ω) is smooth then 

the Ψ(0) = 0. The function ψ is the mother wavelet. The theory could be explained as the following: 

Let 𝑓(𝑥) be the signal and the CWT of 𝑓(𝑥) is then defined as: 
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 𝑊𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑥)𝜓𝑎𝑏
∗(𝑥)𝑑𝑥

+∞

−∞

 (8) 

The (∗) represent the complex conjugate 

 𝜓𝑎𝑏(𝑥) =
1

√|𝑎|
𝜓 (
𝑥 − 𝑏

𝑎
)        𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0 (9) 

The admissibility condition is described as  

 
𝐶𝜓 = ∫

|𝜓(𝜔)|2

𝜔

∞

0

𝑑𝜔 < ∞ (10) 

And it yields to: 

 ∫ 𝜓(𝑥)𝑑𝑥 = 0
∞

−∞

 (11) 

The 𝜓(𝜔) is Fourier transform of the𝜓(𝑥). The admissibility condition describes that the Fourier 

transform of 𝜓(𝑥) will be cancelled off at zero frequency. From this, it is clearly to present that 𝜓 is 

described as a wave or the mother wavelet. It has two characteristic parameters which is (a) dilation and 

(b) translation which varies continuously. The function of the translation is to control the position of 

wavelet in time. The high-frequency information could be obtained by narrowing down the wavelet 

while the dilated wavelet accesses the low-frequency information. This could be said that the parameter 

𝑎  varies with different frequencies [20]. 

3.2. Discrete Wavelet Transform 

DWT is derived from the discretization of CWT to reduce the computation cost when operating at every 

scale. It is opposite to the CWT, the scaling parameter 𝑎 and the time localization parameter 𝑏 are 

defined as 

 𝑎 = 2j, jϵZ (12) 

 𝑏 = k2j, j, ϵkZ (13) 

where 𝑍 = 0,±1,±2,……… The discretization scaling and time parameter is the property of DWT 

such that: 

 𝐷𝑊𝑇 𝑗, 𝑘 = 2−𝑗/2 𝑥 𝑡 𝜓∗ 2−𝑗𝑡 − 𝑘 𝑑𝑡 (14) 

In order for the discretization to occur, the CWT becomes DWT function, the scaling function is given 

by: 

 𝜓𝑗𝑘 = 2
−𝑗/2𝜓2−𝑗𝑡 − 𝑘 (15) 

 𝜙𝑗𝑘 = 2
−𝑗/2𝜙2−𝑗𝑡 − 𝑘 (16) 

Then, the wavelet coefficient of a signal 𝑥 𝑡 can be defined as 

 𝑎2𝑗𝑘 = 𝑥 𝑡 𝜙𝑗.𝑘 𝑡 𝑑𝑡 (17) 

 𝑎2𝑗𝑘 = 𝑥 𝑡 𝜙𝑗.𝑘 𝑡 𝑑𝑡 (18) 
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Consequently, the discretization property can decompose the signal into a hierarchical structure with 

wavelet details and approximations at various scale [21].  

3.3. Envelope Analysis 

The envelope analysis demodulates the amplitude modulating (AM) signal to extract the signal signature 

using three steps. Firstly, the signals are filtered using the band-pass filter cantered at the resonant 

frequency band. The filtering effects will eliminate the unwanted side band’s high amplitude contents 

and suppress the high-frequency noise. Therefore, a signal with a good signal-to-noise ratio (SNR) can 

be obtained. 

 

 

Figure 1. The signals flow in envelope analysis 

 

The Hilbert Transformation (HT) is acted as the processor that perform the calculation or the envelope 

signal. Consider the input signal is FFT, the HT process signal and create analytical signal using the 

following algorithm: 

 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑋𝑖𝑛 = 𝑓𝑓𝑡(𝑥𝑖𝑛) (19) 

 𝑋𝑎(𝑛) =

{
 
 

 
 𝑋𝑖𝑛(𝑛),        𝑖𝑓 𝑛 =

𝑁

2

2 × 𝑋𝑖𝑛(𝑛),        𝑖𝑓 0 < 𝑛 <=
𝑁

2

                   0,        𝑖𝑓 
𝑁

2
< 𝑛 < 𝑁

 (20) 

 𝑥𝑎 = 𝑖𝑓𝑓𝑡(𝑋𝑎) 
(21) 

The created signal is a complex signal in nature. The real part is the original signal and the imaginary 

part is the Hilbert transform of the original signal. The envelope signal is computed using 

 𝑥𝑒𝑛𝑣 = √𝑥𝑎 × 𝑐𝑜𝑛𝑗(𝑥𝑎) (22) 

The signal is then converted to the frequency spectrum using the next equation where the 𝑥𝑒𝑛𝑣̅̅ ̅̅ ̅̅  is the 

mean value of the envelope which is first substrate to remove the offset component. The Hanning 

window is employed to reduce the tendency of spectral leakage which is given by the following  [22].  

 𝑥𝑒𝑛𝑣 = |𝑓𝑓𝑡((𝑥𝑒𝑛𝑣 − 𝑥𝑒𝑛𝑣̅̅ ̅̅ ̅̅  ) × ℎ𝑎𝑛𝑛(𝑁))| (23) 

4. Data Acquisition 

The vibration signals used in this study is obtained from the Case Western Reserve University. The 

apparatus used consists of 2 horsepower motor (left), a torque transducer/encoder (centre), a 

dynamometer (right), and control electronics (not shown) in the following figures. The vibration signals 

data sets for the different type of bearing condition were obtained, namely, inner race, outer race, rolling 

element fault and healthy bearing. The test bearings support the motor shaft so that the bearings can 

rotate as the motor rotate. Single point faults were introduced to the test bearing using the electro-

discharge machining with fault diameter of 7 mils, 14 mils, 21 mils, 28 mils, and 40 mils (1mil=0.001 

inches).  
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Figure 2. (a) Bearing test rig; (b) Its schematic representation  

 

Figure 3. Time-wave of bearing raw signals: (upper) healthy (middle) inner race fault (bottom) outer 

race fault 

The accelerometers were attached to the different positions of the housing with magnetic based to collect 

the vibration data. The positions include the 12 o’clock position at both the drive end and fan end of the 

motor housing where one of it is attached to the motor supporting base plate for some experiment. The 

vibration signals were collected using a 16 channel DAT recorder and were post processed using the 

MATLAB. The motor runs at different speeds typically from 1730 -1797 rpm and the bearing was run 

under different load condition 0, 1, 2, 3, 4 motor horsepower. The data were sampled at 12 kHz sampling 

frequency. To evaluate the purpose of this paper, the signals with zero loading, 0 horsepower obtained 

at the drive end location were used. The bearing was test run at 1797 rpm and the data used contained 

120,000 data points with 10-second time span. The model of the bearing is  6205-2RS JEM SKF, deep 

groove ball bearing and the defect frequencies are summarized as the following  [23]. 

 

Table 1. 2RS JEM SKF, deep groove ball bearing defect frequencies 

Ball Passing Frequency 

multiple of running speed in Hz 

Defect Frequency (Hz) 

BPFI 5.4152 

BPFO 3.5848 

FTF 0.39828 

2 × BPF 4.7135 
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5. Results and Discussion  

5.1. Continuous Wavelet Transform and Envelope Analysis 

In this study, Morlet wavelet mother function is employed for all the continuous wavelet transform 

process to correlate the bearing signals impulse and remove the noise present in the signals. In the 

process of CWT, the entire input signal was ‘dismantled’ and re-arranged according to the energy level 

content in the wavelet coefficient. The high-frequency components have a finer resolution and the lower 

have a courser resolution. So, the signal with higher energy content was located at the smaller scale 

while the signal with lower energy content was located at the higher scale. The energy content of the 

signal was identified by viewing the amplitude of the signal that corresponded to its scale in the wavelet 

coefficient. The higher amplitude component in the signal has brighter color at the coefficient map. 

According to the Figure 4, defective bearings often has lower scale than the normal bearing which is 

scale 3 and scale 9 respectively which indicated that the detective bearings have higher energy content 

than the normal bearing. The rolling element rolled pass the defective part created large impulse and 

produced high frequency during the operation. The defective bearing generated frequency as high as 2.6 

kHz to 5.0 kHz which was known as the resonant frequency band of the defective bearing. The CWT 

was able to eliminate the other frequency components and remain only resonance frequency in the entire 

signals. As the resonance frequency band was identified, the band-pass filter was centered in such a way 

that it covered the entire resonance band in the envelope analysis. This is to ensure the band-pass filter 

could be accurately applied to the resonance band for high-frequency demodulation when assessing the 

increasing fault severities. 
 

Figure 4(e), (f), (g) and (h) present the frequency spectrum of healthy bearing, inner race, outer race 

and rolling elements faults. The resonant band was treated as 2.5 kHz – 5 kHz. By centering the band-

pass filter on the frequency band of 2.5 kHz – 5 kHz would yield frequency spectrum that reviewed the 

faulty characteristic frequency of the bearing in envelope analysis. To effectively assess the fault 

severities of the bearing, the exactly resonant frequency range have to be determined. This could be 

done using the CWT scale function to de-noising the signal and retain only the resonant band in the 

entire signal. For inner race fault, it is clearly seen that the peak generated by the characteristic 

frequency, BPFI, 162.18 Hz is prominent. The frequency spectrum did not show exactly the 162.18 Hz 

at the characteristic frequency as the bearings were not always in the no slip condition which the 

theoretical formula assumed that the bearing is in no slip condition. For the outer race fault, all the 

frequency spectrum showed that the BPFO 107.6Hz is prominent for 0.007” fault size and BPFO for the 

0.021” fault size are evidenced but the opposite signals contained more other frequency component 

compared to the others. The frequency spectrum of rolling element fault contained the characteristic 

frequency of inner race, outer fault, and rolling element fault.  In close inspection to the frequency 

spectrum of outer race fault, it was observed that the fundamental train frequency, FTF is presented 

along with second and third harmonics. Other than that, it was also observed that the unit speed and its 

harmonics are found in the spectrum that was labeled in ‘x’ multiple that indicated residual imbalance, 

loading, and looseness. There are many other frequencies and their harmonics contained in frequency 

are mainly due to many other frequency modulations presented in the resonance frequency band. In this 

analysis, results showed the harmonic of BPFI and BPFO indicated the fault location contained fragment 

denting or frosting [19]. The amplitude of the characteristic frequency and its harmonic are shown to be 

increased when the fault size increase. 
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Figure 4. Wavelet coefficients map of different bearing faults, (a) healthy (b) inner race (c) outer race 

(d) Rolling elements; frequency spectrum for (e) healthy (f) inner race fault (g) outer race fault (h) 

rolling elements fault. 
 

5.2. Discrete Wavelet Transform and Envelope Analysis 

DWT is another important part of the wavelet transform that could perform very well in de-noising using 

the built-in high pass and low pass filters. The main function of the DWT is to decompose the signal 

into smaller frequency band to detect the pattern that is not visible in the signals. On the other hand, 

DWT also reassembles back the decomposed signal to its original signal without any loss of information. 

In this section, detection of bearing fault using the signal reconstruction in DWT and envelope analysis 
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is presented. The mother wavelet employed for this work is ‘db4’ wavelet. The ‘db4’ function is similar 

to the bearing impulse but when compared to the Morlet function, a distinct difference was found 

between them in the terms of the time and amplitude due to the orthogonality. 

 

 

Figure 5: Signal Reconstruction Using DWT 

 

The DWT decomposed the signal into the detail part and approximate part. The detail part of the 

decomposition contains the energy distribution of the signal which it is the key point for fault diagnosis. 

The benefit of the signal reconstruction is that the number of the samples are retained after the 

decomposition so that the frequency resolution can be maintained at the higher decomposition level. 

Using DWT to search for the high- frequency carrier is generally easier and has less computation time 

compared to the CWT. DWT processed the signals by decomposing the signals through the high-pass 

and the low-pass filters in the down-sampling of 2. In a close look into this process, the high-pass 

filtering process stopped after the higher frequency signals components were identified which only the 

lower frequency component would be decomposed in the next subsequent low-pass and high-pass 

filtering.  

 

In this study, all the signals for the different bearing condition are decomposed to four level of 

decomposition as shown in Figure 5. According to Nyquist, the 12 kHz sampling rate signal would have 

the frequency halved the sampling rate which is 6 kHz. The frequency bands which reduced half at each 

decomposition level, are sequentially 3 kHz,1.5 kHz, 750 Hz and 325 Hz. The faulty frequencies are in 

the range of 325 Hz. Therefore, further decomposition is not necessarily. The energy distribution in each 

of the decomposed signals is examined. Then, the frequency band which has the highest distributed 

energy among the detail part were extracted for envelope analysis. The resonance frequency band 

retained by the DWT is different from the one in CWT. DWT retained a wider frequency band due to 

the different wavelet function used. The ‘db4’ function is similar to the bearing impulse but when 

compared to the Morlet function, a distinct difference was found between them in the terms of the time 

and amplitude and resulted in the differences in the frequency spectrum in terms of the upper and lower 

frequency compared to the CWT. 
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Figure 6. DWT energy distribution of different bearing faults (a) healthy (b) inner race (c) outer race 

(d) rolling elements; frequency spectrum for (e) healthy (f) inner race fault (g) outer race fault (h) 

rolling elements fault 

 

Inner race fault was showed to be always diagnosable in envelope analysis regardless of which type 

of filter was used. A close look at the energy distribution of the decomposed signals in Figure 6, it was 

found that it has overall higher distributed energy in different frequency bands. Selecting the higher 

energy distribution frequency band in the wavelet based de-noising is just like the CWT de-noising. 

However, DWT decomposes the signal into resonance frequency bands with higher energy in the entire 

signal and quantify the energy content in the signal component. 
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Prior to envelope analysis, the SNR of both raw signal and wavelet de-noised signals were examined. 

The SNR has improved at least 2.5 dB after pre-processed using DWT. It was found that the ‘db4’ 

mother wavelet function with signal reconstruction reduce lesser noise compare to the CWT Morlet 

function. On other hand, the width of the resonance frequency would affect the overall pattern of the 

frequency spectrum. In this study, the resonance frequency band retained by the DWT is found to be 

different from the one in CWT. CWT have a cleaner spectrum compared to the DWT pre-processed 

opposite signal, however, some frequency components may lost and hence, other faults information also 

may be missed, because CWT filters eliminate the other frequency components and remain only 

resonant frequencies in the entire signal. Unlike, DWT which retained a wider frequency band due to 

the different wavelet function used which yield in wider fault’s coverage. In this instance, the resonance 

frequency retained by DWT found to be contained the information of the misalignment and looseness 

as shown in Figure 6. The harmonic of the unit speed labeled by 1x, 2x and 3x indicated the looseness. 

Other than that, the ‘db4’ function in DWT produced similar pattern to the bearing impulse, however, 

when compared to the Morlet function in CWT, a distinct difference was found between them in the 

terms of the time and amplitude which resulted in differences in the frequency spectrum in terms of the 

upper and lower frequencies. 

 

Moreover, it is also observed that the amplitude of the envelope spectrum for both bases are not the 

same. Signals pre-processed by DWT yielded more logical amplitude for the frequency spectrum in 

which the amplitude for BPFO was lower than BPFI. This fulfilled the theory that the vibration energy 

produced by outer race fault transmitted in a shorter distance to reach the sensor. Thus, the BPFO should 

have greater amplitude than BPFI. 

 

Table 2. The summary of the amplitude of characteristic frequency for increased fault size. 

Component Fault Sizes Characteristic frequency on spectrum Frequency 

Spectrum 

Pattern 
CWT Amplitude  DWT Amplitude 

Inner race 0.007” 
Prominent 

Peak 
0.03686  

Prominent 

Peak 
0.0157800 Similar 

 0.014” 
Evidenced 

Peak 
0.05390  

Evidenced 

Peak 
0.0390700 

Similar 

 0.021” 
Evidenced 

Peak 
0.34890  

Evidenced 

Peak 
0.1361000 

Similar 

Outer race 0.007” 
Prominent 

Peak 
0.01661  

Prominent 

Peak 
0.0310700 

Similar 

 
0.021” 

Opposite 

Evidenced 

Peak 
0.02377  

Evidenced 

Peak 
0.0251900 Not Similar 

 
0.021” 

Orthogonal 

Evidenced 

Peak 
0.33230  

Evidenced 

Peak 
0.0527900 Not Similar 

 

6. Conclusion 

This paper presented the use of CWT and DWT and envelope analysis for resonance band demodulation. 

The CWT and DWT have proven to be an excellent filtering technique and resonant band demodulation 

methods to remove the unwanted frequency components from the signals. The proposed technique has 

shown to easier, faster and accurate to centre the band-pass filter for envelope analysis. The 

characteristic frequencies are evident in the frequency spectrum. Both CWT and DWT produced similar 

frequency spectrum pattern but different amplitude values, the distinguish similarity was the prominent 

characteristic frequency amplitude in the frequency spectrum. However, DWT has shown to be more 

superior as it is easier, less computational time, less noise and retained a wider frequency band which 

contained more faults diagnostic information. The frequency spectrum of rolling elements fault, found 

to be contained the characteristic frequency of inner race, outer fault and rolling element fault. It is also 

observed that the amplitudes of the characteristic frequencies increased when the fault occur and when 

the fault size increased. This feature could be used to distinguish the different bearing fault types, 

identify the fault locations and also assess the fault serveries. 
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