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Abstract. In this study, we report an analytical calculation of electron transmittance and 

polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by 

considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy 

function were used in calculating the electron transmittance and tunneling current. A Transfer 

Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the 

analytical calculation. It was found that the transmittances calculated under exponential 

function and Airy function is the same as that calculated under TMM method at low electron 

energy. However, at high electron energy only the transmittance calculated under Airy function 

approach is the same as that calculated under TMM method. It was also shown that the 

transmittances both of spin-up and spin-down conditions increase as the electron energy 

increases for low energies. Furthermore, the tunneling current decreases with increasing the 

barrier width.  

1. Introduction 

Modern technology relies hugely on semiconductor transistors, in which data processing and 

computing take place. For decades, the growth and improvement of microelectronic devices was 

mainly driven by attempts to miniaturize device dimensions. This miniaturization is reflected in 

Moore’s Law [1], which predicts that the number of transistors per area doubles every 18 months. 

However, this progressive trend will come into conflict with fundamental physical limitations because 

of which the size of transistors cannot be further reduced. Earlier this decade indications of a decline 

in the growth of miniaturization have emerged. A semiconductor technology only utilizes electron 

charge and completely ignores the associated spin state of the electron. However, integrating spin 

polarized currents and using electron spin as a new degree of freedom could not only further enhance 

and improve this technology but could also unveil a new kind of technology. 

This is enabled by the invention of diluted magnetic semiconductors (DMS) [2], in which the spin 

polarization in semiconductors can be obtained by inducing a ferromagnetic material to become a 

semiconductor material. Hideo Ohno et al. in 1998 were the first to determine the ferromagnetic 

properties of semiconductor materials doped with transition metals [2]. Since then, research regarding 

DMS has become one of the core research areas in the magnetic semiconductor field. Additionally, 

Voskoboynikov et al. [3] proposed the idea of using Rashba spin orbit coupling in nonmagnetic 
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semiconductors as a spin filter [4]. Meanwhile, Hall et al. [5,6] suggested the idea of using 

nonmagnetic semiconductors as a spin transistor, which exploits bulk inversion asymmetry (BIA) in 

the (110)-oriented semiconductor heterostructure as the spin polarizator. Perel et al. [7] in their report 

showed that spin polarization affects the process of electron tunnelling through zinc blende material. 

Wang et. al [8] reported that the Dresselhaus effect caused by BIA occurs in zinc blende material, 

which causes tunnelling current enhancement in the case of a thin barrier. Here, the study of electron 

tunnelling through a nanometer-thick trapezoidal barrier with spin polarization consideration is 

reported. 

2. Theoretical model 

The potential profile of the heterostructure composed by metal-GaSb-metal grown along the z-axis is 

shown in Fig. 1, where q is an electron charge, V0 is the GaSb height, Vb is the bias voltage applied to 

the GaSb, and d is the GaSb width. The mathematical representation of the potential profile is given 

by:  

                  𝑉(𝑧) = {

0 ,     𝑧 ≤ 0

𝑉0 −
𝑞𝑉𝑏

𝑑
𝑧

−𝑞𝑉𝑏 ,    𝑧 > 𝑑  

 ,    0 < 𝑧 ≤ 𝑑                        (1) 

 

 

 
 

Figure 1. Potential energy profile by applying bias voltage to the barrier. 

 

The alignment of the electron spin was caused by the inversion asymmetry effect, namely bulk 

inversion asymmetry (BIA). The asymmetry effect is represented by the Dresselhaus Hamiltonian 

which is given by [6,9]: 

 

𝐻𝐷 = 𝛾(𝜎𝑥𝑘𝑥 − 𝜎𝑦𝑘𝑦)
𝜕2

𝜕𝑧2                                                         (2) 

 

here 𝛾 is the Dresselhaus constant, for the material grown only along the z axis the (k) wave number 

represented for every axis is 𝑘𝑥
2 = 𝑘𝑦

2 = 0 and 𝑘𝑧 =
−𝑖𝜕

𝜕𝑧
 . By calculating the eigenvalue and eigen 

function we can calculate the total Hamiltonian system (𝐻 = 𝐻0 + 𝐻𝐷), which can be represented by 

[10,11]: 

 

𝐻 = −
ℏ2

2𝑚±
∗

𝜕2

𝜕𝑧2 + 𝑉(𝑧) +
ℏ2𝑘𝑝

2

2𝑚∗                                                    (3) 

 

here 𝑚±
∗  is the effective mass of a spin dependant electron, which can be represented as: 
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𝑚±
∗ = 𝑚∗ (1 ± 2

𝛾𝑚∗𝑘𝑝

ℏ2 )                                                      (4) 

 

with 𝜙 as the smallest angle between 𝑘𝑦 and 𝑘𝑥 vector, 𝑘𝑝 can be written as: 

 

𝑘⃗ 𝑝 = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂                                                           (5) 

𝑘𝑦 = 𝑘𝑝 cos𝜙                                                              (6) 

𝑘𝑥 = 𝑘𝑝 sin𝜙                                                              (7) 

2.1. Exponential wavefunction-approach 

Using the exponential function, the solution for every region is represented by: 

 

𝜑(𝑧) = {

𝐴 exp(𝑖𝑘1𝑧) + 𝐵 exp(−𝑖𝑘2𝑧) , 𝑧 ≤ 0  

𝐶 exp(∫ 𝑘2(𝑧
′)𝑑𝑧′ 

𝑧

0
) + 𝐷 exp(−∫ 𝑘2

𝑧

0
(𝑧′)𝑑𝑧′),

𝐹 exp(𝑖𝑘3𝑧) ,       𝑧 > 𝑑 

  0 < 𝑧 ≤ 𝑑  ,                (8) 

 

with the wavenumber as follows: 

𝑘1 = (
2𝑚1𝐸𝑧

ℏ2 )

1

2
                                                                (9) 

𝑘2 = (
2𝑚2𝐸𝑧

ℏ2 (𝑉0 −
𝑞𝑉𝑏𝑧

𝑑
))

1

2
                                                     (10) 

𝑘3 = (
2𝑚1𝐸𝑧

ℏ2
(𝐸𝑧 + 𝑞𝑉𝑏))

1

2
                                                     (11) 

 

The transmission coefficient then can be derived as: 

 

(
𝐹

𝐴
) = 2𝑘1 (

𝑘2(𝑑)

𝑘2(0)
) exp (−𝑖𝑘3𝑑) ×

[(𝑘3+(𝑘1
𝑘2(𝑑)

𝑘2(0)
))cosh(𝑎)]+𝑖[(

𝑚2𝑘1𝑘3
𝑚1𝑘2(0)

−
𝑚1𝑘2(𝑑)

𝑚2
) sinh(𝑎)]

[(𝑘3+(𝑘1
𝑘2(𝑑)

𝑘2(0)
))cosh(𝑎)]

2

+[(
𝑚2𝑘1𝑘3
𝑚1𝑘2(0)

−
𝑚1𝑘2(𝑑)

𝑚2
) sinh(𝑎)]

2
          (12) 

 

with  

 

𝑎 = ∫ 𝑘2𝑧
𝑑

0
                                                                     (13) 

𝑎 = (
2𝑚2

ℏ2 )

1

2 2𝑑

3𝑞𝑉𝑏
((𝑉0 − 𝐸)

3

2 − (𝑉0 − 𝐸 − 𝑞𝑉𝑏)
3

2)                                    (14) 

 

2.2. Airy wavefunction-approach 

By defining a function 𝜂 as: 

𝜂(𝑧) = (
2𝑚

ℏ2

𝑞𝑉𝑏

𝑑
)

1

3
[(𝑉0 − 𝐸𝑧)

𝑑

𝑞𝑉𝑏
− 𝑧],                                             (15) 

 

the solution for every region can be represented as: 

 

𝜑(𝑧) = {

𝐴 exp(𝑖𝑘1𝑧) + 𝐵 exp(−𝑖𝑘1𝑧) , 𝑧 ≤ 0 

𝐶 𝐴𝑖(𝜂(𝑧)) + 𝐷 𝐵𝑖(𝜂(𝑧)) , 0 < 𝑧 ≤ 𝑑

𝐹 exp(𝑖𝑘3 𝑧) ,                𝑧 > 𝑑 

 ,                                     (16) 

 

with the wavenumber as follows: 
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𝑘1 = (
2𝑚1𝐸𝑧

ℏ2 )

1

2
                                                                (17) 

𝑘3 = (
2𝑚1

ℏ2
(𝐸𝑧 − 𝑞𝑉𝑏))

1

2
                                                     (18) 

 

The transmission coefficient then can be derived as: 

 

(
𝐹

𝐴
) = −2𝑖

𝑘1𝑎1

𝑚1
exp (−𝑖𝑘3𝑑) × [(

2

𝑚2
2ℏ2

𝑞𝑉𝑏

𝑑
)

1

3
𝑎2 + 𝑖 (

𝑘1𝑎3

𝑚1

𝑘3𝑎4

𝑚3
) −

𝑘1𝑘3

𝑚1𝑚3
(

2

𝑚2
2ℏ2

𝑞𝑉𝑏

𝑑
)
−

1

3
𝑎5]       (19) 

 

with the Airy function as follows: 

 

𝑎1 = 𝐴𝑖′(𝜂(𝑑))𝐵𝑖(𝜂(𝑑)) − 𝐴𝑖(𝜂(𝑑))𝐵𝑖′(𝜂(𝑑))                              (20) 

𝑎2 = 𝐴𝑖′(𝜂(𝑑))𝐵𝑖′(𝜂(0)) − 𝐴𝑖′(𝜂(0))𝐵𝑖′(𝜂(𝑑))                             (21) 

𝑎3 = 𝐴𝑖(𝜂(0))𝐵𝑖′(𝜂(𝑑)) − 𝐴𝑖′(𝜂(𝑑))𝐵𝑖(𝜂(0))                               (22) 

𝑎4 = 𝐴𝑖(𝜂(𝑑))𝐵𝑖′(𝜂(0)) − 𝐴𝑖′(𝜂(0))𝐵𝑖(𝜂(𝑑))                               (23) 

𝑎5 = 𝐴𝑖(𝜂(0))𝐵𝑖(𝜂(𝑑)) − 𝐴𝑖(𝜂(𝑑))𝐵𝑖′(𝜂(0))                                (24) 

2.3. Matrix transfer method  

Using the matrix transfer method, the GaSb region is divided into N regions, with n = 2, 3, …. , N-1. 

The solution can be represented as: 

 

𝜑1 = 𝐴1 exp(𝑖𝑘1𝑧1) + 𝐵1 exp(−𝑖𝑘1𝑧1) ,           𝑧 < 0                                    (25) 

𝜑𝑛 = 𝐴𝑛 exp(𝑖𝑘𝑛𝑧𝑛) + 𝐵1 exp(−𝑖𝑘𝑛𝑧𝑛) ,             0 ≤ 𝑧 < 𝑧𝑛                                   (26) 

𝜑𝑛 = 𝐴𝑛+1 exp(𝑖𝑘𝑛+1𝑧𝑛) + 𝐵𝑛+1 exp(−𝑖𝑘𝑛+1𝑧𝑛) ,    0 < 𝑧 ≤ 𝑧𝑛                           (27) 

𝜑𝑁 = 𝐴𝑁 exp(𝑖𝑘𝑁𝑧𝑁−1) ,           𝑧 ≤ 𝑧𝑁                                            (28) 

 

By applying the boundary conditions, the solution can then be written into matrix 

 

(
1
𝐵1

) = (
𝑎11 𝑎12

𝑎21 𝑎22
) (

𝐴𝑁

0
),                                                 (29) 

 

and the transmission coefficient can then be defined as: 

 

𝑡 = 𝐴𝑁 =
1

𝑎11
                                                               (30) 

 

2.4. WKB approximation 

The solution of the Schrödinger equation is written as: 

 

𝜑(𝑧) = 𝑅(𝑧)𝑒𝑥𝑝 (𝑖
𝑆(𝑧)

ℏ
)                                                    (31) 

 

and the transmission coefficient can then be written as: 

 

𝑇 = |
𝜑𝑡𝑟𝑎𝑛𝑠

𝜑𝑖𝑛𝑐
|
2
= 𝑒𝑥𝑝 (∫ (2𝑚(𝑉(𝑧) − 𝐸)

1

2(ℏ𝑑𝑧)−1𝑧1

𝑧2
)                             (32) 

 

2.5. Spin dependent transmittance  

The effective Schrödinger equation for each region can be written as: 



5

1234567890

2nd Materials Research Society of Indonesia Meeting  (MRS-Id 2016) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 214 (2017) 012038 doi:10.1088/1757-899X/214/1/012038

 

 

 

 

 

 

 

 

𝑑2𝜑±

𝑑𝑧2 +
2𝑚1

ℏ2 (1 ±
2𝛾𝑚1𝑘𝑝

ℏ2 )
−1

𝐸𝑧±𝜑± = 0,   𝑧 ≤ 0                                  (33) 

𝑑2𝜑±

𝑑𝑧2 +
2𝑚2

ℏ2 (1 ±
2𝛾𝑚2𝑘𝑝

ℏ2 )
−1

[[𝑉0 − 𝐸𝑧±]
𝑑

𝑞𝑉𝑏
−  𝑧 ] 𝜑± = 0,   0 < 𝑧 ≤ 𝑑                 (34) 

𝑑2𝜑±

𝑑𝑧2 +
2𝑚1

ℏ2 (1 ±
2𝛾𝑚1𝑘𝑝

ℏ2 )
−1

(𝐸𝑧±+𝑞𝑉𝑏)𝜑± = 0, 𝑧 > 𝑑                            (35) 

 

Using the Airy function, the solution then can be written as: 

 

𝜑±(𝑧) = {

𝐴± exp(𝑖𝑘𝑧1±𝑧) + 𝐵± exp(−𝑖𝑘𝑧1±𝑧) , 𝑧 ≤ 0 

𝐶±𝐴𝑖 (𝜂±(𝑧)) + 𝐷± 𝐵𝑖 (𝜂±(𝑧)) , 0 < 𝑧 ≤ 𝑑

𝐹± exp(𝑖𝑘𝑧3± 𝑧) ,                𝑧 > 𝑑 

                                      (36) 

 

with  

 

𝑘𝑧1± = (
2𝑚1𝐸𝑧±

ℏ2 )

1

2
(1 ±

2𝛾𝑚1𝑘𝑝

ℏ2 )
−

1

2
                                               (37) 

𝑘𝑧3± = (
2𝑚1

ℏ2
(𝐸𝑧 + 𝑞𝑉𝑏))

1

2
                                                   (38) 

𝜂±(𝑧) = (
2𝑚2±

ℏ2

𝑞𝑉𝑏

𝑑
)

1

3
[(𝑉0 − 𝐸)

𝑑

𝑞𝑉𝑏
− 𝑧]                                        (39) 

 

the transmission coefficient can then be derived as: 

 

(
𝐹±

𝐴±
) = −2𝑖

𝑘𝑧1±𝑎1

𝑚1±
exp (−𝑖𝑘𝑧3±𝑑) × [(

2

𝑚2±
2 ℏ2

𝑞𝑉𝑏

𝑑
)

1

3
𝑎2 + 𝑖 (

𝑘𝑧1±𝑎3

𝑚1±

𝑘𝑧3±𝑎4

𝑚3±
) −

𝑘𝑧1±𝑘𝑧3±

𝑚1±𝑚3±
(

2

𝑚2±
2 ℏ2

𝑞𝑉𝑏

𝑑
)
−

1

3
𝑎5]     

(40) 

2.6. Spin dependent tunneling current  

The tunneling current can be calculated by deriving the following equation [12,13]: 

 

𝐽 = ∫
𝑞𝑚1𝑘𝑏𝑇

2𝜋2ℏ3

∞

0
𝑇(𝑧) ln (

1+exp (𝐸𝑓−𝐸𝑧)

1+exp (𝐸𝑓−𝐸𝑧−𝑞𝑉𝑏)
)𝑑𝐸𝑧,                                      (41) 

 

with 

 

𝑇(𝑧) = 𝑇+(𝑧) + 𝑇−(𝑧)                                                        (42) 

 

In which T(z) is the total of the transmittance in spin up and spin down state, 𝑚1 is the electron mass 

in the metal, 𝑘𝑏 is the Boltzmann constant, T is the temperature in Kelvin, 𝐸𝑓 is the Fermi energy, 𝐸𝑧 

is the electron energy.  
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3. Results and Discussion 

 
 

Figure 2. Comparison of methods with electron energy lower than potential barrier. 

 

Figures 2 (a) and (b) show the transmittance versus electron energy at low and high energy regimes, 

respectively. The transmittances are calculated by using Airy- and Exponential-wavefunction 

approaches, matrix transfer method, and WKB approximation. It is shown that only the transmittances 

computed by Airy wavefunction-approach fit those calculated by TMM. In addition, the 

transmittances computed under Exponential wavefunction-approaches and WKB approximation show 

the deviation results from TMM. They indicate that the Airy wavefunction-approach is the best 

analytical method in calculating the transmittance in the spintronic devices. These results are the same 

as those obtained for MOSFETs device without spin polarization consideration [14].  

 

 
Figure 3. Transmittance versus energy with variation of the barrier width. 

 

Fig. 4 shows transmittance as a function of energy for the barrier width of 5 and 10 nm. It is seen 

that the transmittances increase as energy increases for the energy lower than barrier height. It is also 

seen that the transmittances show the oscillatory behaviour for energy higher than barrier height. The 

transmittance of the spin up state is greater than the spin down state. Moreover, the transmittance 

increase with decreasing the barrier width. 
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Figure 4. Tunneling current density as a function of bias voltage with variation of the barrier width. 

 

Fig. 4 illustrates the tunnelling current density versus bias voltage plotted against external voltage 

with variation of the barrier width. It is seen that the width of the barrier is very influential on the 

tunnelling current density obtained: the smaller the width of the barrier, the greater the value of the 

tunnelling current density obtained. This is due to the narrower width of the barrier making it easier 

for the electrons to tunnel through the potential barrier, resulting in a higher electron transmittance and 

tunnelling current density. 

4. Conclusion 

We have derived the analytical expression of transmittance and tunnelling current through a 

trapezoidal potential barrier by including the spin polarization effect. It is shown that the 

transmittances calculated under the Airy wavefunction-approach match those computed under the 

matrix transfer method. It is also shown that the transmittances in the spin up state are higher than 

those in the spin down state. In addition, the tunnelling currents increase as the bias voltage increases 

and the barrier width decreases. 
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