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Abstract. Due to the increased need for autonomy, an Extended Kalman Filter (EKF) has been 
designed to autonomously estimate the orbit using GPS data. A propagation step models the 
satellite dynamics as a two body with J2 (second zonal effect) perturbations being suitable for 
orbits in altitudes higher than 600 km. An onboard GPS receiver provides continuous 
measurement inputs. The continuity of measurements decreases the errors of the orbit 
determination algorithm. Power restrictions are imposed on small satellites in general and 
nanosatellites in particular. In cubesats, the GPS is forced to be shut down most of the mission’s 
life time. GPS is turned on when experiments like atmospheric ones are carried out and meter 
level accuracy for positioning is required. This accuracy can’t be obtained by other autonomous 
sensors like magnetometer and sun sensor as they provide kilometer level accuracy. Through 
simulation using Matlab and satellite tool kit (STK) the position accuracy is analyzed after 
imposing constrained conditions suitable for small satellites and a very tight one suitable for 
nanosatellite missions.  

1.  Introduction 
A Global Navigation Satellite System (GNSS) is a system comprising a constellation of satellites 
capable of providing accurate orbit determination (OD) and time synchronization. It transmits 
navigation signal required by GNSS users to estimate their Position, Velocity and Time (PVT) [1]. GPS 
consists of three segments: the control segment, the space segment and the user segment. User segment 
refers to the GPS receivers that use the satellite-transmitted signals for navigation [2]. The GPS space 
segment nominally consists of 24 satellites in six orbital planes they are designed to ensure a visibility 
of at least four satellites at all times. Only four satellites are needed for a navigation fix. The control 
segment consisting of worldwide ground stations to maintain the operation of the space segment. The 
system provides very precise positioning information in meter and cm level. The GPS offers an attractive 
alternative to ground-based tracking systems. It provides very comparable accuracy in an autonomous 
way or nearly autonomous as it depends on the GPS satellites. CubeSats have evolved from purely 
educational tools to a standard platform for technology demonstration and scientific instrumentation and 
application in less than a decade [3]. Due to their low cost in development, they are spreading widely 
and becoming the lead in the list of choices for satellite manufacturing. With the availability of light and 
low power receivers lead a direct way to the usage of GPS navigation in nanosatellites. In [4], it is found 
that 16 % of 94 studied pico- and nanosatellites carried a GPS receiver, not all have been successful. 
The CanX-2 nanosatellite was carrying a GPS receiver among other payloads. It provided promising 
results for GPS navigation on nanosats missions as it was the first mission to successfully deliver GPS 
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navigation fixes and raw measurements [5]. The measurements obtained from the GPS receiver can be 
applied for precise orbit determination (POD) in two ways either for post processing where a least 
squares technique is applied or in real- time onboard navigation where a Kalman filter is used [6]. An 
Extended Kalman Filter (EKF) is a filter suitable with nonlinear systems [8]. It allows for accurate 
prediction of a given state without requiring expansive past data to be stored and computed, which 
allows for efficient on-board computation. Accuracy at the decimeter level can only be achieved under 
the best cases: post processing dual-frequency data with continuous receiver operation providing 
accuracy in cm level [7]. Unfortunately, such requirements may not be accessible in nanosats as they 
have to operate with low power. Single-frequency receivers are more suitable for CubeSats. Several 
experiments especially atmospheric ones need very accurate positioning information in meter level to 
ensure their success. This high accuracy can not be accomplished using autonomous sensors like 
magnetometers and sun sensors as they provide kilometer level accuracy. The GPS accurate navigation 
information opens the door for more experiments to be carried onboard the CubeSat. This makes the 
nanosats perfect candidates for more experiments and challenges. As a result of these power restrictions, 
the GPS will be shut off most of the mission and open when performing experiments. In this paper, 
several constrained conditions are imposed on the availability of GPS data to see how this affects the 
corrected states accuracy. Thus, the remaining of current article is organized as follows: firstly, Section 
2 outlines the OD process consisting of its three main parts (dynamical model, estimation technique and 
measurement model). Secondly, Section 3 shows the simulation scenario using simulated GPS 
measurements with different test cases and the results are also analyzed. Finally, Section 4 declares 
conclusions and future work. 

2.  The OD process using GPS data 
To accomplish an OD process using GPS data a satellite orbit can be determined using a dynamical 
method of analysis, where a force model is used to represent the most effective forces acting on the 
satellite (depends on its altitude). With an initial state vector, the numerical integration of these 
accelerations will give the position of the satellites at discrete-time intervals, resulting in the so called 
predicted orbit. The dynamics then allow the propagation of the state forward in time. The GPS 
measurements and the dynamic information are combined through an EKF for the correction process 
and hence produce a GPS solution. 

2.1.  Satellite’s Dynamic Model 

For a continuous-time system, there are different forms for the state vector representation. Each form 
depends on the solution procedure and the analysis type. In this work, the position and velocity vectors, 
in the Earth Centered Inertial (ECI) coordinates frame, are used to represent the state. This form is more 
suitable for numerical processing and usually easier to deal with during the OD process since they have 
no singularities. The state is presented as Equation (1):  

    
 

  
 

r
x

v
  

T

ECI

t x y z x y z  (1) 
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The order of the total acceleration used in the current work is equal to Newton’s acceleration and the 
acceleration perturbation due to J2. The w  terms represent the modeling errors arising from the limited 

acceleration order. The acceleration components, xa , ya and za are represented in the ECI frame, as 

Equation (3):   
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where: r is the norm vector between the center of the Earth and the satellite, the standard gravitational 

parameter 14 3 23.986004418*10 m s  , the dimensional coefficient 2J 0.0010827 has been found 

from satellite observations and the radius of the Earth R 6378.137km at the equator [9]. 

2.2.  Continuous-Time EKF 

The Kalman Filter (KF) is a recursive algorithm which requires only data from the last and current 

iterations as the predicted state estimate ( k / k 1X̂  ) contains all required information on the system up to 

time (k-1). The KF generates a new state estimate as new observations become available, thus opening 
the possibility of real-time estimation. In case of nonlinear systems, Extended Kalman Filter EKF is 
constructed by linearizing either the system equation or measurement equation or both about the current 
(predicted) state estimate. This is done using the first two terms of a Taylor series expansion and using 
the same structure of the linear Kalman filter to provide the next estimate [10]. This produces a constant 
term and a first derivative term, known as the Jacobian (a matrix of partial derivatives). Most physical 
systems are represented as continuous-time models while discrete-time measurements are frequently 
taken for state estimation via a digital processor. The filter is comprised of two main steps: the prediction 
and the update. In continuous–time form, the dynamics of a linear system (process and measurement 
models) can be represented by the following first-order vector-matrix differential shown in Equations 
(4) and (5):  

  t f ( (t), (t)) (t) x x u w , and  (t) ~ N 0, (t)w Q  (4) 

  t h( (t)) (t) z x v , and  (t) ~ N 0, (t)v R  (5) 

where as shown in Equation (6):  

    k k 0/ 0 0 0/ 0 0
ˆ(t ), E (t ) , var (t )  x x x x P x  (6) 

Suppose that as shown in Equation (7):  

 
ˆ ( t ),u( t )

f
(t)

x


 

 x

and 
k / k 1

k

ˆ

h

x




 x

H  (7) 

By solving Equations (8) and (9):  

  ˆ ˆ(t) f (t),u(t)x x  (8) 
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With Equation (10):  
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The predicted state estimate and predicted covariance matrix will be as Equation (11):  
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The update equations (12-16) of continuous-time EKF are identical to those of discrete-time EKF 
given by:  
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To prevent the Kalman filter divergence, the following algebraically equivalent covariance 
correction Equation (17), which is called “Joseph Alternative KF Form”, is applied [10]:  

 T T
k / k k k k / k 1 k k k k k( K ) ( K ) K K   P I H P I H R  (17) 

Where, the symmetry of matrix multiplication forces Pk/k to remain symmetric. The first Jacobian 
state matrix, Φ, is independent of the type of measurement. Thus, Φ is given by Equation (18): 
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The partial derivatives are too lengthy to be stated here and are available in [11]. The Runge-Kutta 
method of fourth order is used to propagate the state and covariance in-between measurements. It 
provides good performance to a relatively low computational cost even for larger integration steps. The 
Kalman Filter can be “tuned” by adjusting the covariance of the process noise, wk, and the covariance 
of the observation noise, vk. 

2.3.  GPS measurement model  

The atomic clocks aboard all GPS satellites are synchronized to a time referred to as GPS system time. 
GPS satellites continuously transmit signals that can be picked up by a GPS receiver. In an ideal case, 3 
satellites are enough for a 3-dimensional position fix, but in practice a fourth satellite is needed to correct 
the receiver’s clock as the receiver clock is not usually synchronized with the system time [12]. 
The vector r from the receiver to a GPS satellite can be expressed as Equation (19): 
  r S u  (19) 
where S  is the position vector of the GPS satellite and u  is the position vector of the receiver. The 
pseudo range p can be expressed as Equation (20): 

 up = r + c.t  (20) 

c is the light’s speed and ut is the offset between receiver clock and GPS system time as Equation (21):    

 up - c.t  S u  (21) 

This is actually an equation for a sphere centered on the GPS satellite. We have a set of four 

unknowns  u u u ux , y , z , t : the receiver position and the time offset. With four satellites available, the 

pseudo range is as Equation (22):   
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where  i i ix , y , z are the individual GPS satellite positions.  

The receiver velocity can be obtained by either forming an approximate derivative of the position or 
by studying the Doppler shift of the signal from individual satellites. More advanced techniques include 
using the carrier phase of the incoming signal to smooth the pseudo range obtained from the code phase 
to completely eliminate ionospheric error. The GPS receiver output is in the earth centered earth fixed 
(ECEF) frame. This fix information can be used to correct the on-board orbit propagator in the satellite, 
and it can also be downloaded from the satellite and used in more accurate orbit propagators. Satellite 
orbits are calculated in an earth centered inertial (ECI) frame as the equations of motion have to be 
applied in an inertial frame. The measured state vector is then transformed into ECI frame for 
compatibility. The observation Jacobian matrix, H is hence a 6x6 identity matrix [13].  
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3.  Simulation scenario 
Several scenarios are carried out with different constrained conditions to see the performance of the 
filter. The cases are tabulated in table.1 showing simulation times when the GPS receiver is on and off 
as well as the duty cycle. It has to be noted that the switching time differs from one mission to another 
depending on their own requirements. Case 5 in particular is suitable for nanosatellite operations. 

3.1.  The initial orbit and conditions for the EKF 

 A sun synchronous orbit (700 km) is chosen to test the filter so that the limited acceleration model 
outlined in the last section is convenient to be applied at that altitude. The reference state is generated 
from the high-precision orbit propagator (HPOP) in the satellite tool kit (STK). In the configuration, 
Runge-kutta 7/8 method for numerical integration of equations of motion, the EGM 96 model (up to a 
degree of 70*70) for perturbation due to the nonsymmetrical geopotential, Harris-Priester model for 
atmospheric drag, lunar/solar gravitational attraction and solar radiation pressure are also included. The 
atmospheric drag coefficient is set to 2.2, the solar radiation pressure coefficient is set to 1.0 and the 
constant area-to-mass ratio is set to 0.0043. 

The initial state to start the filter is set as a truth model i.e. with no initial error. The simulated GPS 
measurements were created using the rand function in Matlab which produces normally distributed 
pseudo-random numbers, using a chosen error and rate. The error added to the position is 10 meters and 
to the velocity is 0.01. The Q and R are taken to be 6x6 diagonal matrices. The process noises for 
acceleration uncertainty are set to 1x10-5. The step size is 1 second and the initial covariance is set to: 

           
2 2 2 2 2 2

o =diag 10 m , 10 m , 10 m , 0.01m/s , 0.01m/s , 0.01m/s 
 

P  

R matrix is set to equal Po  as no initial error is present. When GPS measurements are not available, 

the solution is based only on the dynamics part, as it is better than not having a solution at all. This 
causes quick convergence when the measurements are available again. More details are in [7]. 

Table 1. Availability of GPS data. 

Case # GPS_ON GPS_OFF 
Duty 
cycle 

 Case # GPS_ON GPS_OFF 
Duty 
cycle 

Case 1 15 Min 15 Min 50 %  Case 4 5 Min 10 Min 25 % 
Case 2 10 Min 10 Min 50 %  Case 5 9.8 Min 88.2 Min 10 % 
Case 3 5 Min 15 Min 25 %  Case 6 - - 100 % 

 
Simulation results and analysis: The simulations were performed for 1 day, 8hours and 1 orbit to see 

how this affects the position error as well as to test the filter. After running simulations, the results are 
presented in table. 2 showing the average root sum square (ARSS) for position, the maximum RSS and 
the average root sum square AVSS for velocity.  

Table 2. Simulation Results. 

Case 
ARSS [m] Max RSS [m] AVSS in [m/sec] 

1 Day 8 h 1 Orb 1 Day 8 h 1 Orb 1 Day 8 h 1 Orb 

Case 1 9.1904 8.1858 10.68 120.1 82.317 67.39 0.0313 0.0278 0.0339 

Case 2 4.8439 4.209 4.822 55.114 39.8 41.739 0.0234 0.02 0.0244 

Case 3 13.799 12.14 14.58 129.77 107.11 107.29 0.045 0.038 0.049 

Case 4 8.2841 7.361 9.163 80.065 55.322 50.778 0.0347 0.0298 0.039 

Case 5 348.72 378.51 542.9 1700.0 1340.0 1130.0 0.3569 0.3889 0.562 

Case 6 0.5082 0.534 0.738 9.1657 8.823 9.683 0.0063 0.0063 0.0064 

 
As expected, the position error increased as the time decreased. The difference in accuracy between 

Cases 1 and 2 is relatively high. Case 2 is better by nearly 50% in ARSS and the maximum RSS for all 
simulation times relative to case 1. Also, Cases 3 and 4 have a similar pattern. Different users maybe 
prefer one case to another depending on their requirements and what type of small satellite they have. 
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Figure 1. Position diff. 8h simulation Case 5. Figure 2. RSS 8h simulation Case 6. 

  

Figure 3. Pos. diff. 1 day simulation Case 5.       Figure 4. RSS 1 day simulation Case 2. 

 
The microsatellites are more flexible than nanosatellites concerning the power limits making the 

cases other than Case 5 more suitable. Case 5 with the least duty cycle have the worst results of all cases 
which were also expected since saving power will result in less accurate results. The maximum error 
reaches 1.34km for 8h and 1.7km for 1 day simulation. This is still a very good result compared to the 
coarse accuracy provided by other sensors that can be onboard nanosatellites. Some values listed in table 
2 are depicted for more clarity and to show the performance of the filter .Figures 1 and 2 show the 
position difference for Case 5 and the RSS for Case 6 with 8h simulation, respectively. Figures.3 and 4 
show the 1 day simulation for Case 5 and Case 2, respectively.   

4.  Conclusion and future work 
An EKF has been designed to autonomously correct the state using GPS measurements. The GPS 
measurements are simulated to represent only single-frequency data. Due to power constraints that are 
imposed on small satellites, especially nanosats, it is impossible for the GPS to be turned on all the time. 
In fact, in nanosats it will be shut down most of the mission’s life time. For that reason, different test 
cases with different duty cycles and simulation times are applied. As expected, the accuracy degraded 
as the simulation time and the duty cycle decreased. On average ,a meter level is obtained even on a 
case with 10% duty cycle which is desirable when accurate on board tests are needed. For future work, 
more tuning for the filter is hopefully to be tried to reduce the maximum error. With real data available, 
it will be preferable to see the results in real case situation. 
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