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Abstract. Support vector machine (SVM) has been known as one-state-of-the-art pattern 
recognition method. However, the SVM performance is particularly influenced byits parameter 
selection. This paper presents the parameter optimization of an SVM classifier using chaos-
enhanced stochastic fractal search (SFS) algorithm to classify conditions of a ball bearing. The 
vibration data for normal and damaged conditions of the ball bearing system obtained from the 
Case Western Reserve University Bearing Data Centre. Features based on time and frequency 
domains were generated to characterize the ball bearing conditions. The performance of chaos-
enhanced SFS algorithms in comparison to their predecessor algorithm is evaluated. In 
conclusion, the injection of chaotic maps into SFS algorithm improved its convergence speed 
and searching accuracy based on the statistical results of CEC 2015 benchmark test suites and 
their application to ball bearing fault diagnosis. 

1.  Introduction 
Vibration-based condition monitoring (CM) currently plays an important role in manufacturing 
industries to continuous surveillanceof rotating machinery compared to the conventional methods. 
Reducing the productivity costs by minimizing themachine’s downtime is one of its crucial benefits in 
order to enhance goods production.As vibration-based condition monitoring area can be treated as 
pattern recognition, support vector machines (SVMs) approach is commonly used. However, the 
SVMs performance is really dependable to its kernel and parameters selection. This problem can be 
formulated as an optimization problem. Thus, many optimization algorithms were applied to overcome 
this essential problem, systematically.   

Zhang et al. proposed a hybrid method of the barebones differential evolution (BBDE) algorithm 
for SVMs parameters tuning [1]. Several others evolutionary algorithms (EAs) have been employed to 
optimize the SVMs parameters such as genetic algorithm (GA) [2], particle swarm optimization 
(PSO)[3], ant colony optimization (ACO) [4]and artificialimmunization (AIA) algorithms [5]. 

In this paper, four chaos-enhanced stochastic fractal search (SFS) algorithms are presented. The 
performance of these improved variants of SFS algorithms was evaluated using modern benchmark 
test suites (CEC 2015) and the SVMs parameters tuning for fault diagnosis as its engineering 
application.   
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2.  Enhanced Stochastic Fractal Search algorithm with chaos 
Stochastic fractal search (SFS) optimization algorithm was developed by Salimi to imitate a growth 
process [6]. The particles in the process try to expand its growing in searching space. This 
metaheuristic algorithm shows promising results with short computational time. The main advantage 
of this algorithm is less starting tuning parameters to initiate the searching process.There are two main 
equations from the original SFS algorithm have been modified with the introduction of a chaotic 
variable named as α as follow: 
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Noted that, eq. 1 was part of Diffusion Process while eq. 2 in First Updating Process in the original 

SFS algorithm. This study investigated two different one-dimension non-invertible chaotic maps 
influence toward the algorithm performance as proposed in previous studies by Saremiet al.[7] and 
Miticet al.[8]. These new chaotic equations will force the particles to move towards the current best 
optimal solution in a chaotic manner. Table 1 tabulates the mathematical description of the proposed 
addition of chaotic maps while Figure 1 shows the graphical presentation of these maps over 100 
generations. Each of the chaotic maps has the starting point 0.7 and normalized to a range of [0, 1]. 
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No Map Name Equation 
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Four chaos-enhanced stochastic fractal search (CFS) algorithms were developed with the 

implementation of two different chaotic maps at two different parts of SFS algorithm. The initial value 
of 0.95 was selected for parameter α as suggested in [8]. Table 2 shows the combination of chaotic 
maps for CFS algorithms. More details regarding the CFS algorithms can be found in [9]. 
 

  
a) Chebyshev map   b) Gauss/Mouse map 

Figure 1.Visualization of chaotic maps used 

x(
k)

10 20 30 40 50 60 70 80 90 100

Time step k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



3

1234567890

International Technical Postgraduate Conference  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 210 (2017) 012060 doi:10.1088/1757-899X/210/1/012060

 
 
 
 
 
 

Table 2.Chaos-enhanced stochastic fractal search (CFS) algorithms 
Algorithm Diffusion Process Updating Process
Original SFS Random [0, 1] Random [0, 1] 
CFS01 Chebyshev map Chebyshev map 
CFS02 Chebyshev map Gauss/Mouse map 
CFS03 Gauss/Mouse map Chebyshev map 
CFS04 Gauss/Mouse map Gauss/Mouse map 

 
In this study, 4 modern benchmark test functions from CEC 2015 were used to evaluate the 

performance of CFS algorithms. Two different levels of problem dimension, D were investigated 
which are 10 and 30. The number of population (Start Point), NP was fixed to 100. Maximum 
Diffusion Number (MDN) equal to 1 with the first Gaussian walk is utilized. Note that, all calculations 
were performed in MATLAB 2015b software that runs on a desktop PC Intel ® Core ™ i5 of CPU 
3.30 GHz with 4GBs RAM and Window 7 (64 bit) operating system. The full results of CFS 
algorithms evaluation using modern benchmark functions are tabulated in Table 3a and 3b. Non-
parametric statistical analysis was conducted based on a total of 50 simulation runs. 

3.  Support vector machines 
Support vector machines (SVMs) can be simplest discussed using a description of linear discriminant 
analysis. A hyperplane (i.e. a straight line in two dimensions) will be created to separate two classes of 
data that generalized best (maximum margin). The hyperplane equation as follow, 
 

0,)(  xwxD            (3) 

 
wherex is the input vector and w is the vector of free weights. Each data point xk in the training set 

is assigned to a class on the basis of the separating condition given by, 
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whereC1 and C2 are classes, with respective class labels (1) and (-1), or more concisely as, 
 

     1,  kxwkykxD            (5) 

 
whereyk is the class label. The distance of each point in the training set from the separating 

hyperplane is, 
 

 
w

kxD
            (6) 

 
An interval that contains the separating hyperplane but excluding all data is called margin, τif, 
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is satisfied for all k.  The optimal margin is illustrated in Figure 2. Note that the parameterization of 

the hyperplane is currently arbitrary. This can be fixed by specifying, 
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and this converts eq. (7) into the separation condition of eq. (5).  
 

 
Figure 2. Optimal separating hyperplane 

 
The objective of SVMs is to maximize the margin so that the hyperplane will be placed at the 

furthest point from data and can be achieved by minimizing w . An appropriate objective function is, 
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where the parameters αi are Lagrange multipliers. Further discussion can be found in [10] regarding 

convex and the dual formulation of the problem. The analysis so far only considers linear hyperplane. 
The technique can be made nonlinear by the use of kernel trick which involves quadratic, polynomial 
and radial basis function (RBF) kernels. 

4.  Application of CFS algorithms to fault diagnosis 

Theapplication of vibration signals is relatively usual in condition monitoring and damage detection 
area. Signal processing techniques is an important expertise in order to extract diagnosis information 
from the selected raw vibration data. Features extraction and selection phase are performed to 
characterize the condition before pattern recognition methods were employed to identify the damages. 

Seed faults bearing data from Case Western Reserve University was used in this study [11]. Figure 
3 shows the schematic diagram of the experimental setup. Three faults which are outer race fault (OR), 
inner race (IR) fault and ball (B) fault were introduced to the drive end bearing. The defects sizes are 
0.007 inches and 0.021 inches. Each original signalwas divided into 10 signals for each condition of 
fault types and sizes. Four features (two time-domain and two frequency-domain features) were 
calculated based on [1].  
 

 
Figure 3. The schematic diagram of the experimental setup (adapted from[1]) 
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Multiclass SVMs based on one-against-one technique is employed to classify the bearing 
conditions. One-third of each class fault is used for training the SVM and the remaining data forthe 
testing purposed. The training and testing data were selected randomly and repeated for 30 times 
before average classification error is calculated as the objective function. CFS algorithms were 
evaluated to optimize two SVMs parameters which are the soft margin/penalty parameter, C and the 
scaling factor for RBF-kernel, γ. Then, the obtained parameters were used to generate an average 
classification error of 10,000 SVMs runs in verification stage. The performances of each CFS 
algorithm are compared to their predecessor algorithm. Figure 4plotted the features data based on 1st 
and 2nd principle components for visualization purpose. All data have seen clearly separated between 
normal and damaged conditions. For Inner Race (IR021) and Outer Race (OR021) of fault size 0.021 
inch, the data can be divided in 3-Dimension view. The original normalized four features data were 
used to generate the SVMs classifier model.  

The initial parameters of SFS and CFS algorithms were set as follow; starting point (NP) = 100 
particles, number of maximum iterations (G) = 50 generations, problem dimension (D) = 2, searching 
range of [0 150] for the soft margin/penalty (C) and [0 10] for the scaling factor of RBF-kernel 
(γ).Maximum Diffusion Number (MDN) was set as 1 while 1st Gaussian Walk is selected. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4. The visualization of features data 
 

5.  Results and discussion 
Table 4 tabulates the results of bearing fault classification using SVMs-based SFS algorithms.The 
second and third column shows the obtained scaling factor, γ and soft margin, C respectively. The 
average of percentage classification accuracy for 10,000 runs is shown in the fourth column with its 
standard deviation.  Based on classification error in the fifth column, CFS 04 algorithm performance 
was better than other CFS and its predecessor algorithms. The CFS 04 algorithm has achieved 
99.992% classification accuracy with the lowest standard deviation of 0.18% in comparison with 
others. On the other hand, the addition of Chebyshev map in Diffusion and First Updating Processes of 
SFS algorithm has slightly deteriorated its performance.   

The benchmark test suites of CEC 2015 and bearing fault classification results indicated that CFS 
04 algorithm shows better searching accuracy compared to the SFS and its other chaos-enhanced 
algorithms. 
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Table 4. CFS algorithms performance in comparison to SFS 
Algorithm Scaling 

Factor (γ) 
Soft Margin, 

(C) 
Accuracy (%) Classification 

Error 
SFS 1.8438 0.3771 99.971±0.340 2.8750x10-4 

CFS 01 5.3945 4.0529 99.746±1.240 2.5375x10-3 

CFS 02 2.3719 1.0194 99.986±0.240 1.3750x10-4 

CFS 03 1.6727 1.1077 99.984±0.260 1.5833x10-4 

CFS 04 1.9870 1.1471 99.992±0.180 7.0833x10-5 

6.  Conclusion 
In this study, four variants of SFS algorithm enhanced with chaos is introduced. Their searching 
accuracy and convergence speed performance were evaluated using modern benchmark test suites of 
CEC 2015 and engineering application to ball bearing fault diagnosis. CFS algorithm with 
Gauss/Mouse map in Diffusion and First Updating Processes show superiority performance in 
comparison to its predecessor and other CFS algorithms.  
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