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Abstract.  The aim of this paper is to optimize the operational parameters and quality of one 
step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless 
steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec 
cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and 
cladding quality has been assessed through Taguchi interaction matrix and graphical output. 
The study demonstrates that very good cladded layers with low dilution and increased 
mechanical proprieties could be fabricated using low laser energy density by involving a 
pulsed laser. 

1.  Introduction 
Up to date, there are many technologies available to fabricate coatings layers on different types of 
steel substrates, among which laser cladding is one of the most used technique for improving the 
properties of new surfaces or to recondition the worn components [1,2]. A higher compactness of the 
coatings high precision and superior mechanical proprieties are only several advantages of laser 
cladding over the conventional coatings methods (plasma coating, flame coating or welding) The main 
goal in the laser cladding technology is to not overheat the base material and to obtain a low dilution, 
typically (< 5%) and in the same time to have an increased adhesion between the coating and base 
material [3,4].  

Usually for laser cladding a continuous wave laser is used that can provide a high and constant 
power for the process [5,6,7]. CO2, Nd:YAG and diode are the most common continuous lasers 
involved in laser cladding processes. In contrast, a pulsed laser is able to provide the laser energy in 
plusses meaning that the power density can be tuned by setting the pulse duration and the number of 
pulses per time unit. In a complex study, Sun at el. [8] investigated the influence of pulse energy, 
frequency and powder feed rate on the Stellite 6 cladding on stainless steel and concluded that dilution 
has a major influence on the hardness of the cladded layer and that an 89% pulses overlap is the 
optimal values in order to prevent the occurrence of small cracks in the cladded layer. A similar study 
was carried out by Farnia et al. [10] which analyse and optimize the melting ratio as the key factor for 
the process design. It was determined that pulse duration and overlapping factor have different effects 
at low and high values. Moreover, the melting ratio increases at low values of pulse duration and 
decrease at longer pulse duration that mean there is more interaction time between the laser pulse and 
the coating in case of short pulses. 

A comparison between continuous and pulsed laser was made by Zhang et al [9] using preplaced 
powder method to coat titanium–vanadium carbides reinforced in a Fe-based matrix. They report 
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advantages like nanoscale carbides formation, finer grain structure and improved hardness in case of 
using the pulsed laser.  

Pulsed laser cladding of WC carbide in overlapped geometry was successfully realized by C.P. 
Paul [11]. Full dense and crack free coating were fabricated using different parameters for pulse width, 
frequency and laser power.  

Muwala et al. [12] uses a modulated Yb-fibre laser to investigate the preplaced cladding of Inconel 
718 powder on AISI 304 steel substrate. Using PVA as binder to deposit the powder was determined 
that stacks of columnar dendrites are formed predominately in case of using the pulsed laser due to the 
repeated melting solidifications cycles.   

The aim of this study is to further investigate the influence of laser pulse width and frequency on 
the geometry profile and hardness of Ni based powders. Using the design of experiments method is 
determined what parameters have the most influence on the cladded tracks and what is the interaction 
between the process parameters.   

2.  Materials and methods  

2.1.  Materials 
Stainless steel was used as substrate for the laser cladding tests, respectively AISI 304 grade plates 
with nominal dimensions of 60x60x6 mm. Currently 304 stainless steel in used for manufacturing of a 
large number of components in marine equipment, automotive industry, petro-chemical industry and 
for applications that require moderate to high corrosion resistance,   

Nickel based Inconel 718 atomized powder has been used for laser cladding through different 
process parameters. This type of powder is characterized by a very good behavior for laser cladding 
and can be used for various reconditioning applications of worn stainless steel components. 

The Inconel coatings are dense, pore free and exhibit excellent creep and stress rupture coupled 
with a good corrosion resistance at high temperatures (up to 700°C). 

 
Table 1. Chemical composition of the powder. 

Material Element (%)  Powder  
dimensio

n 
Ni Cr Fe Mo Cu Nb Ti Si Mn C B  

MetcoClad 
718 Bal 19 18 3 - 5 1 0.2 0.08 0.05 0.0

05 
44…90 

µm 
AISI 304* 9.6 19.2 Bal - - - - 0.80 1.61 0.053 -  

* analysed by SPECTROMAXx M spectrometer 

2.2.  Cladding obtaining 
The experimental tests have been carried out using a TRUMPH Trupulse 552 pulsed laser with an 
average power of 552 W and a Precitech YC50 coaxial cladding head manipulated by a CLOOS 7 
axes welding robot (figure 1). The powder was dosed using a AT-1200HPHV Termach (Thermach 
Inc. USA) powder feeder and argon with 99.99% purity was used as carrier gas. 

The cladding module consists in a conical powder injection system having the laser beam 
positioned coaxially with the powder jet. 

A stand-off distance of 10 mm was used between the cladding head and the substrate and a 5⸰  

tilting angle in the cladding direction was necessary to protect optical system of the laser. To 
investigate the effects of the cladding parameters on the clad profile and mechanical proprieties, 
experiments consisting in coaxial laser cladding of a single track was performed.  
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Altogether nine individual track of 40 mm length were fabricated with a specific set of parameters 
and the optimum ones have been determined through the DOE analysis method.  

 

 
Figure 1.  The experimental frame used for the laser cladding of 
Inconel 718. 

 
Table 2 summarizes the process parameters and the main geometrical and mechanical 

characteristics of the laser cladded tracks. All the claddings have been performed using a 2 mm pulsed 
laser spot diameter with rectangular shaped profile and a powder feed rate of 4 g/min. 

 
Table 2. Laser cladding parameters. 

 
Sample 

Power 
 
 
[W] 

Pulse 
duration 
 
[ms] 

 
Frequency 
 
[Hz] 

Width 
 
 
[mm] 

Hight 
 
 
[mm] 

Clad 
Area 
 
[mm2] 

Melt 
Area 
 
[mm2] 

Melt 
depth 
 
[mm] 

Wet 
angle 
 

[⸰ ] 

Dilution 
 
 

[%] 

Micro 
Hardness 
 
[HV02] 

1.1 2000 0.8 130 1.35 0.20 1.49 0 0 152 0 182 

1.2 2300 1 130 1.83 0.33 0.39 0 0.03 150 0 200 

1.3 2600 1.2 130 2.19 0.45 0.60 0.15 0.22 146 20 214 

2.1 2000 1 150 1.73 0.36 0.42 0 0.04 145 0 215 

2.2 2300 1.2 150 1.93 0.45 0.57 0.18 0.23 142 24 223 

2.3 2600 0.8 150 1.66 0.35 0.40 0 0 144 0 203 

3.1 2000 1.2 170 1.65 0.44 0.52 0.09 0.12 132 14.75 228 

3.2 2300 0.8 170 1.66 0.32 0.38 0 0 150 0 208 

3.3 2600 1 170 2.07 0.52 0.72 0.12 0.20 125 14.28 220 
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The laser cladded tracks have been cut and prepared by grinding, polishing and electrochemical 
etching in 10% wt. oxalic acid solution using continuous current (5 V and 400 mA). An inversed Leica 
DM IL optical microscope was used for the cross-section analysis of the single tracks. The micro-
hardness analyses were realised using a Shimadzu HMV 2T micro-hardness tester. Five HV02 were 
made on each sample using the following set-up: load 200gf and dwell time of 15 sec 

3.  Results and discussions  
Figure 2 illustrates the geometrical appearance of the obtained samples cross-section. 

 

 
Figure 2. Low magnification microscopy of the single tracks laser claddings. 

 
Compared with the continuous wave laser cladding presented in our previous works [13,14,15], the 

pulsed laser deposition bears more specific parameters regarding pulse frequency, duration, energy, 
and so forth which have a pronounced influence on the quality of the coatings. It can be clearly 
observed from figure 1 that the process parameters have a major influence on the geometrical profile 
of the laser cladded tracks. The pulse duration and pulse frequency of the laser have a direct influence 
on the amount of energy that is transferred into the cladding process per unit of time and area. As the 
general aim of the laser cladding process is to use low amounts of energy to avoid overheating the 
substrate.  In the same time, it is also necessary to have enough power density to melt the powder and 
to create a strong bonding with the substrate. This fine tuning of the laser energy could be obtained by 
using a pulsed laser that allows controlling the pulse length and the number of pulses employed per 
unit area. Using the Taguchi design of experiments matrix, the influence of the power, pulse duration 
and frequency on the properties of the coatings (clad area, melt depth, dilution, micro-hardness) has 
been assessed. The nine tracks presented in the figure 2 shows that all process parameters have a 



5

1234567890

International Conference on Innovative Research — ICIR EUROINVENT 2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 209 (2017) 012058 doi:10.1088/1757-899X/209/1/012058

 
 
 

significant influence on the tracks profile, as determined from the interaction plots depicted in figures 
3 a and b. As a general rule for interpreting this type of graphs, the highest mean value (clad area, 
hardness) or the lowest (dilution, melt depth) represents the optimum value for the respective 
parameter. Also, the value of the slope dictates the intensity of the influence for the chosen variables. 
A higher variation slope means a significant interaction/dependency. 

The most obvious influence of the operational parameters is on the clad area that represent the area 
of the material coated on the surface of the base material. Using the Taguchi three step optimization 
design approach, the dependence between the process parameters (power, pulse and frequency) and 
the clad area has been assessed (figure 2).  

The cladded area is mainly influenced by the first two parameters variation, respectively from 2000 
to 2300 W for laser power, 0.8 to 1 ms for laser pulse width and from 130 to 150 Hz for laser 
frequency. The optimal values for laser power is 2000W, 0.8 ms pulse width and 130 Hz frequency. 
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Figure 3. Main effect plot of clad area and melt depth as function of laser 
power, pulse width and frequency. 
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The process parameters have a different effect on the melt depth of the cladding tracks. Figure 1 
suggests that laser power has no significant influence on the melt depth compared with the laser 
frequency that can drastically modify the melt depth form 0 up to 0.20 mm with direct consequence on 
the dilution and mechanical proprieties of the coating. It results that even if the laser energy is 
influenced by the power and pulse duration, the increasing of the number of pulses on the same unit of 
area will produce an increase of the melt depth of the substrate.  
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Figure 4. Main effect plot of dilution and microhardness as function of 
laser power, pulse width and frequency. 

 

By analyzing the main effect plot for dilution, it has been determined that dilution is influenced by 
the melt depth of the cladded tracks the similarity between the two plots being obvious (figure 4 a and 
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b). The frequency can produce the most visible effect on the melt depth and microhardness as resulted 
from figure 3b.  
 

 
Figure 5. Interaction plot between power, pulse width and laser 
frequency. 

 
Finally, all the effect plot for clad area, melt depth, dilution and microhardness must be considered 

as been related and interacted with-other.  
 

 
Figure 6. Microstructure of the Inconel 718 cladded tracks. 

 
The process parameters can interact with-other and create a particular mean effect. The interaction 

plot presented in figure 5 highlights the interaction between the power, pulse width and frequency 
related to the clad micro-hardness. By analyzing the interaction slopes is clearly that only in case of 
power and frequency combination there is no significant interaction so the main effect, respectively 
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the hardness increasing can be predictable. The interaction is severe in case of pulse with combination 
settings with power or laser frequency. It results that for a predictable result in case of laser cladding 
using a pulsed laser the best way to obtain the desired clad geometry profile is to set the power and 
frequency and to maintain the pulse with constant. The cladding microstructure is composed from 
coarse dendrite near the interface with the base material and more fine dendrite structure in the upper 
area of the coating. A noninterference line or a free precipitate layer as it could be seen in figure 6 a is 
the interface zone between the materials. No visible or microstructural modifications have been noted 
in the heat affected zone due to the low heat input of the pulsed laser. The cross-section profile and 
microstructure are modified depending on experimental parameters set-up. Therefore, a threshold 
temperature must be ensured to promote the nucleation of the dendrites and the formation of a dense 
and compact structure. This threshold temperature was not reached on samples 1.1 2.3 and 32 where 
large islands of unmelted powder are present in the coating surface.  

4.  Conclusions  
In this study, a nickel based Inconel 718 atomized powder has been cladded on AISI 304 steel 
substrates by means of a pulsed laser. In order to find the optimal parameters of the laser which have 
an increased influence on the cladding quality, namely laser power, pulse width and frequency, a DOE 
approach has been used, by using a Taguchi design. The results, which express the interrelationship 
between laser cladding parameters and the characteristics of the clad produced, can be used to find 
optimum laser parameters, to predict the responses, and to contribute to a better understanding of the 
laser cladding process. 
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