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Abstract. The effect of the universal acid-base indicator on the pattern formation and mass 
transfer in a two-layer system composed of two reactive miscible liquids in a vertical Hele-
Shaw cell is studied experimentally. The reaction we study is a neutralization one. It turns out 
that the presence of the indicator leads to a change in the spatio-temporal characteristics of the 
system and even in the mass transfer mechanism near the reaction front—from diffusive to 
convective. The conditions, where the universal indicator does not affect the reaction and can 
be used as a visualizing mean, are reported. 

1. Introduction 
Different types of indicators are used to visualize chemical composition of the reactive system in 
different fields of chemohydrodynamics increasingly often [1-4]. Particularly, various acid-base 
indicators are utilized in studies on the neutralization reaction in a two-layer system in order to 
visualize spatial distribution of reagents. Usually, physical parameters (viscosity, density, diffusivity) 
of an indicator and reagents are different. Hence, the use of an indicator may results in appearance of 
additional driving forces of convection and even gives rise to the pattern formation in the system. 

There are several studies on how the indicator affects buoyancy-driven instability of the acid-base 
front. In [5] it was demonstrated both numerically and experimentally, that an indicator can affect the 
instability scenarios by changing the density profile of the system. An attempt to determine the 
conditions, under which the indicators do not have a significant impact on the system and can be used 
as a visualizing mean, was made in [6]. The authors examined the neutralization reaction between 
aqueous solutions of hydrochloric acid and bromocresol green, which acts as a base. They reported the 
change in the scenario of instability development due to concentration variation of reactants. In [7] the 
neutralization reaction between the aqueous solutions of hydrochloric acid and sodium hydroxide with 
a dissolved color indicator was studied. In some cases the employed indicator was bromothymol blue, 
in other it was phenolphthalein. The authors reported that chemically reacting flows are drastically 
changed depending on the type of pH indicator. In [8] the same group of researchers repeated the 
experiment, but they added aqueous solution of ethanol to the base containing bromothymol blue. 
They showed that the predominant mechanism of mass transfer at the reaction front changes from 
diffusive to convective depending on the mass fraction of ethanol. There are also interesting series of 
studies where the reaction is caused by a droplet containing the pH indicator bromothymol blue that 
falls dropwise into an aqueous alkaline solution [9-10]. Authors investigated the short-term transport 
processes across the interface, including the fingering instability of the reaction front. 
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In our previous work [11], we showed that the dependence of the diffusion coefficients of the 
reactants on their concentration in a two-layer reactive system leads to the formation of a periodic 
cellular convective structure localized within the reactive zone; we called it the concentration-
dependent diffusion instability (henceforth CDD instability). For visualization of emerging convective 
structures we used the acid-base universal indicator. We supposed that the indicator concentrations we 
used were sufficiently small and did not influence the reaction. However, the above-mentioned 
investigations raise the question whether the indicator we used could lead us to misleading results. In 
this regard, here we focus on the detailed study of the effect of the universal indicator on the onset of 
CDD instability and mass transfer processes near the reaction front in a miscible two-layer system 
composed of aqueous solutions of NaOH and HCl. 

2. Experiment  
The experiments were performed in a vertically oriented Hele-Shaw cell. The cell was made of two 
glass plates separated by a thin gap of 0.12 cm (figure 1). The reaction under consideration was the 
neutralization of hydrochloric acid by sodium hydroxide. The standard enthalpy change for this 
reaction is ΔH = −57 kJ/mol. Molar concentrations of acid and base aqueous solutions were 
Ca = 0.7 mol/l and Cb = 0.5 mol/l, respectively. Such concentrations were chosen due to the fact that 
CDD instability in HCl/NaOH system is observed at certain ratio of initial concentrations, specifically 
Ca/Cb = 1.4 [11].  
 

 

Figure 1. Sketch of the two-layer miscible system filling a vertical Hele-Shaw cell. 
  

In order to provide an initially flat horizontal interface between the reagents, we used special thin 
plastic shutter that was separating solutions before their contact. At first, a lower layer was filled with 
NaOH solution, then the solution was tightly covered by the shutter, and then an upper layer was filled 
with HCl solution. After that, the shutter was carefully taken out of the cell, the reactants were brought 
into contact, and the reaction started.  

Fizeau interferometer was used to visualize the refractive index field. In order to visualize the space 
distribution of the reagents and the reaction product, we used the universal indicator. An advantage of 
the universal indicator is that it provides an image with a distinct boundary between the reagents and 
the reaction product. Note that the universal indicator is a combination of several indicators (thymol 
blue, methyl orange, bromothymol blue, phenolphthalein, tropaeolin OO, bromocresol green, and 
bromocresol purple), that display colors at pH values inside the certain transition range. That is why 
the universal indicator displays color changes over a wide pH value range from 1 to 10. Colors from 
yellow to red indicate an acidic solution, colors from light to dark blue indicate bases, and green color 
indicates that a solution is neutral. The indicator was prepared on the basis of the aqueous solution of 
ethanol with mass concentration w = 80%. The initial concentration and density of the indicator were 



3

1234567890

Winter School on Continuous Media Mechanics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 208 (2017) 012029 doi:10.1088/1757-899X/208/1/012029

 
 
 
 
 
 

2 × 10−4 M and 0.849 g/cm3, respectively. To provide high-contrast images of pH distribution, the 
Hele-Shaw cell was illuminated by white-light toroidal lamp. Experiments were recorded by digital 
camera with high spatio-temporal resolution. All experiments were performed at room temperature 
(24±1°C). 

3. Results and discussions 
At first, we would like to describe the typical experiment without any indicator. When reactants come 
into contact, the transition zone originates between them where the reagents are supplied towards the 
reaction front only due to diffusion mechanism, which substantially increases the duration of the 
reaction and leads to low rate of the reaction front propagation, which is approximately υ = 10-4 cm/s 
(see figure 4). Then, the occurrence of a depleted layer located above the diffusion zone gives rise to 
the formation of plumes which results in the development of weak buoyancy-driven convection in the 
entire upper layer, while the area below the diffusion zone remains motionless. After certain time (in 
our experiment, it was approximately 480 seconds), the fluid flow in the form of a horizontal array of 
convective cells is formed within the diffusion zone just above the reaction front. The convective cells 
structure exists between two parts of immobile fluid with stable density stratification, which indicates 
the occurrence of inflection on the density profile and consequently the formation of a localized 
density “pocket” with unstable density stratification. The refractive index distribution which reflects 
the density distribution in this experiment is presented in figure 2. A more detailed description of the 
formation mechanism of CDD instability can be found in [11].  
 

 
In order to investigate the influence of the universal indicator, three different situations were 

considered: (i) the universal indicator was dissolved in both layers, (ii) the indicator was dissolved 
only in the upper layer with acid, (iii) the indicator was dissolved only in the lower layer, containing 
the base. The indicator was dissolved in the solutions of reagents prior to the beginning of the 
experiments. The range of the volume concentration of the dissolved indicator is V = (0.15÷3.3)%. 
Convective patterns observed at 2000 second for the experiments with different conditions are 
presented in figure 3. All images clearly demonstrate the appearance of the localized cellular structure. 
The purple downstreams indicates the acid entrained by the flow. The yellow upstreams enriching 
with salt points out on that the reaction occurs at the lower edge of the cellular structure, where the 
reaction front is.  

 

 

Figure 2. Interference images showing the development of CDD instability in experiment without 
indicator. The arrows indicate the reaction front position, xf observed at (a) 400 s, (b) 1300 s after 
the aqueous solutions were brought into contact.  
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Comparison of the temporal evolution of the reaction front in the system with and without the 

indicator is shown in figure 4. It is interesting to note that in the case, where the volume concentration 
of indicator is V = 0.15%, the reaction front rate is the same as in the experiment without the indicator, 
no matter in which layer the indicator was dissolved. An increase in the indicator concentration 
(up to V = 2%) does not essentially affect the front rate when it is dissolved in both layers or only in 
the layer with acid (in the figure they are indicated as half shaded and white symbols, respectively), 
but, as it will be shown later, it drastically changed the onset time of the instability. However, if the 
indicator is added only to the lower layer (black symbols), the front propagation rate noticeably 
increases. The addition of the indicator with concentration V > 2% to both layers results in completely 
different reaction scenario. The CDD instability observed previously is not forming. Instead, in the 
upper layer of the system containing acid, an intense convective motion develops, which magnifies the 
mass transfer near the reaction front, leading to a significant increase in the front propagation rate. 
Thus, the addition of even such low indicator concentrations leads to a change in the mass transfer 
mechanism from diffusive to convective. 

 

 

Figure 4. Temporal evolution of the reaction front position. Half shaded, shaded, and open 
symbols indicate experiments when the indicator is dissolved in both layers, in the lower layer, 
and in the upper layer, respectively. 

 

Figure 3. Chemoconvective patterns observed in the system with the universal indicator 
dissolved (a) in each layer; (b) in the upper layer, (c) in the lower layer. Volume concentration of 
the indicator is V = 1.5%. The arrows indicate the reaction front position, xf. Black line: initial 
contact line. (Colored online). 
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In figure 5 the dependence of the onset time of CDD instability on the volume concentration of the 
dissolved indicator is presented. The experiment showed that the presence of the indicator in both or 
only in the upper layer always leads to delay of the instability development, whereas its addition only 
to the lower layer always reduces the instability onset time, tonset. By varying the indicator 
concentrations and selecting the layer in which it will be dissolved, it is possible to approach the 
results obtained in the experiment in the absence of the indicator.  

 

 
Such a behavior may be explained as follows. Due to low density of the indicator solution, the 

density of the layer in which the indicator is dissolved decreases. Thus, in experiments with indicator 
on the upper layer the system becomes more stable. Specifically, the density difference, which triggers 
the formation of the density pocket inside the reaction area, is smaller than the density difference 
forming in the experiment without indicator. Therefore, the time required for the density pocket 
formation, due to which the CDD instability develops, increases. It explains the observed delay in the 
formation of convective structure. Moreover, the greater the concentration of the indicator the more 
stable the system becomes. Experimental results show that the predominant mechanism of mass 
transfer near the reaction front is diffusion; therefore, the front propagation rate as shown above is 
almost the same as in the experiment without indicator. 

In the reverse case, where the indicator is dissolved only in the lower layer, the value of the density 
difference that triggers the formation of the density pocket inside the reaction area becomes bigger. 
Thus, the onset time of CDD instability is almost the same as in the experiment without indicator. An 
increase of the indicator concentration further destabilizes the reaction area. Hence, the time required 
for the formation of the density pocket decreases. The main mechanism of mass transfer near the 
reaction front is also diffusion. However, due to the fact that CDD instability onsets earlier, the mass 
transfer near the reaction front is more intense than in the experiments without indicator; therefore, the 
front propagation rate is noticeably higher. 

The presence of the indicator in both layers leads to a symmetrical change in their physical 
parameters, i.e., the value of the density pocket should not differ from its value in the experiment 
without indicator. That is why in this case, the front propagation rate coincides with the one observed 
without indicator. However, an increase of indicator concentration (V > 2%) triggers completely 
different scenario of the reaction. When reagents come into contact, a convective motion in the form 
of rising plumes develops above the reaction front. Formed plumes quite quickly reach the upper 
boundary of the cell. As a result, buoyancy-driven convection develops in the entire upper layer, but in 
contrast to the experiment without indicator, it is more intense. In this way, an intense convective 
motion that continuously supplies the fresh reagent to the reaction area and performs a removal of the 

 

Figure 5. CDD instability onset time versus volume concentration of the dissolved indicator. 
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reaction product is formed above the reaction front. Constant refreshment of the reactive layer is fast 
enough, which leads to the rapid propagation of the reaction front until it reaches the lower boundary 
of the cell. The rate of the reaction front plotted in figure 4 is approximately υ = 10-3 cm/s.  

4. Conclusions 
In the experimental study of the effect of the universal indicator on the process of instability 
formation, the conditions, where the universal indicator does not make a significant impact on the 
system and can be used as a visualizing mean, are found. It is shown that the volume concentrations of 
the indicator V < 0.2% does not affect the onset time of CDD instability, nor the mass transfer near the 
reaction front. Despite the fact that such indicator concentrations are negligible, it is enough to have a 
good visualization. 
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