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Abstract. A new exact solution for layered convection of a viscous incompressible fluid is
found in this paper. A fluid flow in an infinite layer is considered. Convection in the fluid is
induced by tangential stresses specified on the upper non-deformable boundary. Temperature
corrections are given on the both boundaries of the fluid layer. The analysis of hydrodynamic
fields allows us to state the presence of two stagnant points in the flow of a fluid. It is shown
that, in the case of thermocapillary convection in a fluid, only one stagnation point can exist.

1. Introduction

A number of exact solutions describing nonisothermal fluid flows have been obtained to date. A
great majority of exact nonisothermal solutions of the Navier-Stokes equations in the Boussinesq
approximation are formulated in terms of velocity, pressure, and temperature fields that depend
linearly on horizontal coordinate [1, 2]. In refs. [1, 2, 3,4, 5, 6, 7] one can find the most important
papers and reviews that follow fundamental studies authored by Ostroumov [8] and Birikh [9]
and deal with physically meaningful exact solutions for advective and convective flows. In this
paper, we will consider new exact solutions for layered convection under induced by tangential
forces on the upper boundary of an infinite fluid layer.

2. Boundary value problem formulation
We consider convective large-scale motions of a viscous incompressible fluid in an infinite
horizontal strip. Mathematical simulation of large-scale motions in a fluid is based on the
use of layered flows (V, = 0) [1, 2, 3, 4, 5, 6]. Convective flows of a viscous incompressible
fluid are described by the Oberbeck-Boussinesq equation system [7, 10], which consists of the
Navier-Stokes equations

(V-V)V = -VP+vAV + gpTk, (1)

the heat equation

V.VT = xAT, (2)

and the incompressibility equation

vV.V=0 (3)
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Here V(z,y,2) = (V;,V,, V) is a velocity vector; P is the deviation of pressure from
hydrostatic, divided by constant average fluid density p; T is the deviation from the average
temperature; v and y are the coefficients of the kinematic viscosity and thermal diffusivity of
the fluid, respectively; k is the unit vector of the z axis directed vertically upwards; V is the
Hamiltonian operator; A is the three-dimensional Laplace operator.

Note that, although the terms of the convective derivative from the Navier-Stokes equation
and the incompressibility equation are identically equal to zero, they remain present in the heat
equation. Therefore, strictly speaking, a nonlinear problem is solved.

To find the hydrodynamic fields, we represent the velocities in the following form [1, 2]:

Ve =u(z), V,=uv(z). (4)

This representation allows us to find a solution for an overdetermined system. The system
(1) - (3) consists of 5 equations with respect to four unknowns (velocity components V,, V;, and
physical fields T' and P). The solution (4) identically satisfies the incompressibility equation (3).
Thus, the velocity field (4) is solenoidal.

The pressure and the temperature can be represented in special linear forms depending on
the horizontal coordinates as

T =Ty(2) + Ti(2)x + Ta(2)y, P = Po(2)+ Pi(2)z + Pa(2)y. (5)

Then we substitute the selected class of solutions (4) - (5) into the Navier-Stokes equation
(1) and the heat equation (2). Equating the coefficients at the identical powers of the horizontal
coordinates x and y, we obtain the following system of ordinary differential equations:

™ =0, T/=0. (6)
8P1 8PQ
P _ 8T T2 _ 48T
v’ = Py, v = Py, (8)
xTy = uTi+ Ty, (9)
0P,
8—20 = 9BTo. (10)

In this paper, we assume that the lower boundary of the fluid layer is absolutely rigid and
fixed. The upper boundary is assumed to be free and undeformed. We consider the following
boundary conditions: at the lower boundary (z = 0) of the fluid layer the adhesion condition is
satisfied and the temperature is given by the function

T = Ax + By. (11)

On the upper boundary (2 = h), constant pressure S acts and the temperature is given by the
function

T =9+ Cx+ Dy. (12)

In addition, stresses are given on the free boundary z = h as

du_5 dv

&a. (13)

Thus, we obtain the following system of boundary conditions:

u(0) = v(0) =0,
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TO(O) = Oa Tl(o) = A7 TQ(O) = Ba

TO(h) = 197 T (h) = C7 TQ(h) = Dv

PO(h) :Sa Pl(h):07 PQ(h) :O’ (14)
N () =6,
W50 = &

Without loss of generality, we can assume that S = 0, thereby counting the reduced pressure
from the level specified at the upper boundary.

3. Equation system solution
The case of temperature and stresses simultaneously set on the upper boundary was considered
earlier in [11]. Therefore, another particular case of the above-mentioned boundary value
problem is considered here, namely, when the temperature perturbation is specified at the lower
boundary (C' = D = 0).

Integrating the system of equations (6) - (10) in view of the boundary conditions, we obtain
the exact solution

(24h&1v + 6BBngh?z — 8BAnghz? + 3BBngz%)

z
- 1
u(z) Sy ; (15)
2(24h&v + 6ABngh®z — 8ABNghz® + 3ABng2>)
v(z) = : (16)
24nhv
Poz) = 168hv(60x7(2hS — Bghd + BgUz?) + BBg&a(2h° — 5h32% + 5hzt — 22°)) N
0 20160xnh2v
ABg(168h&1v(2h° — Bh32% 4 5hzt — 225
N Bg(168h&1v( 5h>z* + bhz 2 ))+ (17)
20160xnh?v
+Bﬁng(35h8 — 80h822 4+ 168h325 — 196h225 4 88hz" — 152°)
20160xnh?v '
~ ABg(h - 2)*
Pi(z) = BV A— (18)
BBg(h — 2)?
Py(z) = ————— 1
2(2) TR (19)
_ 3 _ 2 3
To(z) = —2 210hv(—12xnV + B&a(h® — 2hz® + 2 ))+
2520xnh2v
A(210h& v (h3 — 2h2? + 23) + BBng(20h8 — 105h323 + 14Th%2* — TThz5 + 1529))
+ 5 . (20)
2520xnh*v
A
Ti(z) = A— ", (21)
B
Ty(z) = B — TZ (22)

Then we formulate the problem of finding the number of stratification points in the velocity,
pressure and temperature fields. Note that the case A = B = 0 is not considered here due
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to its triviality. Indeed, if A = B = 0, then P, = P, =Ty =15, =0, u = Z—&, v = 2—52,
n n
Ixn(—h? + 22 U
Py(z) = b9 Xn(gh R ), To(z) = %, and this means that there are no stratifications.

Therefore, we assume hereinafter that A> + B2 # 0.

4. Investigation of velocity components
The velocity components uandv are zero at the origin (the factor z is explicit). Let us now ask the
question how many more zeros these functions can have. This question is quite important, since
the presence of zeros in these functions indicates the existence of counterflows (stratifications)
in the convective flow of a viscous incompressible fluid.

We normalize the expressions in (3) for the components u(z) and v(z) of the velocity vector V
by A reducing them to a dimensionless form. Without loss of generality, we set A # 0.

We introduce the following dimensionless parameters: v = B/A, 6 = h/l, where h is the
characteristic vertical dimension of the layer and [ is the characteristic horizontal dimension of
the layer. In addition, the dimensionless coordinate z is determined as z — z/h.

A3
The velocities u(z) and v(z) are divided by 95 . As a result, we finally arrive at the
formula 53
_ 9" Q.2 3
u= o (V(62 — 822 +32%) + 24W7 ), (23)
v= ﬁ <6z — 82% 4 32° + 24W. ) (24)
24 )
Here, W, = V—& is the Weber number determined for the value &;.
9B8Cnh?

We study the function u(z). It obviously vanishes at the point z = 0.
If v = 0, then this zero is unique for Wy # 0. If v2 + W2 = 0, then the function u(z) = 0.
Therefore, we set v # 0 and represent the function «(z) in the form

263y

u(z) = 51 f(z,24W1/v), f(z,q) =62z — 822 + 323 +¢. (25)

The number of the zeros of the function u; on the interval (0;1) determines the number of
stratifications of the velocity field u(z).

Figure 1 presents the plot of the function f(z,0). This function reaches its maximum at the
point zp = (8 —+/10)/9 and takes the value fyq. = 4(6845v/10)/243 at this point. The function
f(2,0) has no zeros in the interval (0;1); however, one can change the value of the parameter ¢
so that the function f(z,q) (as well as the function u(z)) will have one or even two zeros on the
interval (0;1).
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Figure 1. The plot of the function f(z,0).

Thus, returning to the function u(z), we obtain the following estimates:

1)
2)
3)
4)

5)

24Wy

> £(0,0) =0
24,

0= f(0,0) >
24W,

> —f(1,0) =1

1>

> —f(l,O) = _fmaz

_fmaa: = —f(l,O) = 24

Y
24W
- < _fmax

)

I

Y

i. e. the function u(z) does not change its sign;

i.

e. the function u(z) changes its sign once;

. e. the function u(z) changes its sign twice;
. e. the function u(z) changes its sign once;

. e. the function u(z) does not change its sign.

The behavior of the function u(z) for various values of the ratio Wy /v is shown in figure 2.
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Figure 2. The behavior of the function u(z).

Similar estimates are valid for the function v(z):

24Wsy > £(0,0) = 0
0= £(0,0) > 24Wy > —f(1,0) =1
1> 24W5 > _f(170) = — fmaz
_fmax = —f(].,O) = 24Wy
24W2 < _fmax

)

)

Fe b e e e

o O O 0o 0

. the function v(z) does not change the sign;
. the function v(z) changes its sign once;

. the function v(z) changes its sign twice;

. the function v(z) changes its sign once;

. the function v(z) does not change the sign.



Winter School on Continuous Media Mechanics IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 208 (2017) 012010 doi:10.1088/1757-899X/208/1/012010

Of particular interest in this situation is the study of the velocity vector hodograph.
Theoretically, there cannot be more than 25 different forms of the hodograph (5 variants for
the u(z) curve and 5 variants for the v(z) curve). However, there are situations that generate
one and the same hodograph (for example, for v = 1 when W7 = Wy = —1 or W = Wy = 0,
the hodograph curve is the bissectrice of the first quadrant). In addition, we should not forget
about the relationship between the parameters of the problem (W& = W), which leads to
additional constraints and, consequently, to a decrease in the number of fundamentally different
trajectories of the velocity vector hodograph. As an example, in figures 3 and 4 the velocity
vector hodographs are given for two fixed values of the ratio Wy /~.

v(2) v(2)

L L ) L
-0.06 -0.05 -0.04 0.03 -0,

-0.02

~0.04

Figure 3. The velocity vector Figure 4. The wvelocity vector
hodograph. hodograph.

Let us write out the basic quantitative measure of vorticity:

e
A Y
O =rotV = 6% 6% 8% , (26)
u v 0
or coordinatewise:
ov 53 2 3 ou & 2 3
—_— —_— = —— —_ = —_—= — — z — U. 2
Q, % 5 (2Wo+2z—22°42), 5, = 5 W1+ A(z—22°+2%)), Q,=0. (27)

Of particular interest here are combinations of parameters for which the vorticity becomes zero
at least at several points (it is not identically equal to zero). It is at these points that the
direction of the vortex changes.

It is obvious that, for v = 0, there are no such points for the component €2,; therefore, we
assume that v £ 0. Then Q9 can be rewritten as

& 2 3 8y 2 3
Q= —?(QWl + A(z =224 27%)) = —T(2W1/'y + Az — 227 4 27)). (28)

That is, the number of points at which the components Q,and(, change their direction (one at a
time or simultaneously) is governed by the number of zeros of the functiong(z, ¢) = c+2z—222+23
(when ¢ = 2W; /A~y for the component €2, and when ¢ = 2Ws for Q). With all the further
calculations, one can refer to the behavior of the function g(z, ¢), whose plot for ¢ = 0 is presented
in figure 5.
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Figure 5. The plot of the function g(z,0).

5. Conclusion

For the discussed boundary-value problem of simultaneous setting of the boundary temperature
and stresses, it has been shown that, in the hydrodynamic fields (in the velocity field in
particular), stratifications may arise, depending on certain combinations of the parameters
specifying the physical quantities at the boundaries of the region under study. The number
of stratification points is always different (0, 1 or 2), and it depends on the values of the
constants. The same values also determine the positions of stratification points in the region
under investigation. In addition, it has been demonstrated that the motion is vortex (the
vorticity is not identically zero); however, under certain combinations of the system parameters,
the vortex may change its direction. The conditions for this phenomenon have been discussed.
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