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Abstract. A pair of magnetizable solid particles embedded in a cylinder made of high-
elasticity material is considered as a model of a mesoscopic structure element of a
magnetorheological elastomer. An applied magnetic field induces ponderomotive interaction
of the particles making them to move relative to one another so as to balance the counteracting
magnetic and elastic forces. In a certain parameter range, the system exhibits bistability due to
which under the increase / decrease of the field, the interparticle distance changes in a hysteretic
manner. This behavior has a significant effect on the ability of the mesoscopic element to
resist external load. Using the developed two-particle model prone to the magnetomechanical
hysteresis, we extend it to the case of a virtually macroscopic sample presenting the latter
as a superposition of such elements with distributed interparticle distances. In spite of its
simplicity, this scheme in a generally correct way describes the field-induced changes of the
internal structure and elastic modulus of the magnetorheological composites.

1. Introduction

Magnetorheological elastomers (MREs) are a special type of smart composites distinguished
by their ability for significant shape and elastic properties changes in response to applied
magnetic field. Under magnetization, the microparticles of the ferromagnet filler are got coupled
by ponderomotive forces that entails a number of interesting effects: magnetically induced
deformation and stiffening of MREs, the magnetic shape memory, and others, all of which
possessing a substantial practical potential. At the qualitative level, the picture is simple. The
applied external field magnetizes the particles and imparts magnetic moments to them. The
arising ponderomotive interaction strives to arrange the particles into a spatial structure that
corresponds to the minimum of magnetostatic energy. For the particles embedded in a polymer,
this tendency is opposed by the elastic restoring forces, which turn up in the MRE matrix as
soon as any particle shifts from its initial position. Both experiment [1, 2, 3] and theory [4, 5, 6]
show that such changes can strongly modify the properties of simulated MRE samples, thus
entailing their qualitatively different behavior. The key issue underlying these peculiarities is the
magneto-elastic interaction of the particles in a magnetorheological elastomer at the mesoscopic
level, i.e., at the scale of the particle size and the interparticle distance.

2. Mesoscopic element

To clarify the above-mentioned points, in our works [7, 8] we considered a system consisting of
a pair of spherical magnetizable particles embedded in an elastomer matrix. Such a mesoscopic
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system is the smallest representative entity that displays basic magnetomechanical effects
inherent to MREs. The scheme is illustrated in figure 1. Two particles of identical radius a are

Figure 1. Schematic view of the mesoscopic element.

positioned insde an elastomer cylinder in such a way that the center-to-center line points along
its axis. The outer dimensions of this two-particle (2P) element: length L0 and cross section
area S, are chosen so that the particles occupy 30% of its geometric volume; this reference value
of the volume content of ferromagnetic phase is most interesting for applications.

An external magnetic fieldH0 is applied along the axis of the cylinder. Under the action of the
field, the particles magnetize and get involved in the magnetostatic (ponderomotive) interaction
that in the configuration of figure 1 results in mutual attraction. The magnetic energy Umag of
the pair depends on the center-to-center distance l = |l| and the magnitude of the applied field
H0 = |H0| assuming minimum when the particles come into tight contact.

As full adhesion at the particle-elastomer interface is assumed, this implies that any particle
displacement causes deformation of the matrix. As the polymer is non-magnetic, the elastic
energy Uel accumulated due to that, is independent of the magnetic field being a function of
only the initial l0 and actual l distances between the particles; apparently, Uel is minimal in the
absence of deformations (l = l0).

Given that, the total energy U of the considered 2P cylindrical element of a MRE could be
presented as a sum of the magnetic Umag and elastic Uel contributions. Accordingly, under the
action of external magnetic field two types of forces, competing with each other, arise inside the
system: the magnetic forces tending to bring the particles closer, and the elastic ones resisting
any deformation of the matrix. The algorithm that enables one to evaluate the total energy
of the considered mesoscopic element, is similar to that described in our paper [8]. In below
we adduce it briefly focusing on the modification made to the model and on the characteristic
properties of the considered system.

The magnetic part Umag of the total energy is considered, as in Ref. [8] using the numerical
solution of the magnetostatic problem for two spherical particles, whose magnetization M

is related to the internal field by the empirical Fröhlich-Kennelly formula [9], so that the
magnetic response of the particles is described by two material parameters: the initial magnetic
susceptibility χ0 and the saturation magnetization Ms. For carbonyl iron particles, most
commonly used as MRE fillers, the corresponding reference values are χ0 ∼ 104 and Ms ∼
1500 kA/m. However, in below we use for Umag dimensionless units denoting: the field intensity
as h0 = H0/Ms, the distance between the particle centers as q = l/a and the magnetic energy
as Ũmag(q, h0) = Umag(l,H0)/(µ0M

2
s a

3) with µ0 being the magnetic permeability of vacuum.
When treating the elastic energy Uel induced by the particle displacements in the matrix, the

approach of Ref. [8] was modified by assuming that the sample has finite dimensions. Since the
elastomer can undergo significant deformations, we describe it as an incompressible Mooney-
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Rivlin body [10]. The emerging nonlinear elasticity boundary problem was formulated as an
axisymmetrical one and solved by the finite element method. The constants of the model, viz. c1
and c2, determine the elastic properties of the polymer matrix and are directly connected with its
shear modulus G. To pass to dimensionless units, we introduce parameter c̃2 = c2/c1 and elastic
energy Ũel(q, q0) = Uel(l, l0)/(c1a

3). The MREs, which display the highest magnetically induced
deformation and stiffening, have small Young moduli (E ≃ 10 − 30 kPa), see for example [11].
Taking that as a reference value, one finds that for a MRE with Young modulus E ∼ 25 kPa
the elastic constant c1 of our model equals to 1.1 kPa for a fixed c̃2 = 0.2.

To enable analytic calculations, the numerical data for the magnetic and elastic components
of the energy were interpolated and their sum arranged in the functional form:

U(q, q0, h0)/(c1a
3) = βŨmag(q, h0) + Ũel(q, q0), (1)

which proved to be a good approximation for the true magnetoelastic energy of the mesoscopic
element. As seen from (1), the ratio of the magnetic and elastic contributions is determined by
parameter β = µ0M

2
s /c1.

Analysis of function (1) shows that on the increase of the field the system passes a threshold
above which two different equilibrium configurations of the particles exist simultaneously. One
state is “remote”, where the interparticle distance is slightly reduced in comparison with its
initial value (l ≃ l0). Another possible equilibrium is a “collapsed” one, where the particles
converge to one another (l ≃ 2a). This bistabilty regime exists within a finite field-strength
interval and ends up on further enhancement of the field, where only the collapsed state is
stable. The consequence of this bistability is a hysteresis of the interparticle distance if the
applied magnetic field change in cycle, see figure 2. In the systems where particle magnetization
saturates, the possibility of hysteresis for a given initial distance between the particles q0 = l0/a
is controlled by parameter β that has the meaning of effective compliance of the system. For
the reference magnetic characteristics of a real MRE and elasticity of the matrix c1 = 1.1 kPa,
parameter β of our model is about 2500.

Figure 2. Magnetomechanical hysteresis for the mesoscopic element with β = 2500 and initial
center-to-center distances q0 equal 2.5 (1), 3 (2), 3.5 (3), 4 (4).

3. Elastic properties of the mesoscopic element

In the presence of external magnetic field h0, the interparticle distance in the 2P element changes
from the initial value l0 to the new equilibrium one l. Simultaneously, the total length of the
element decreases from L0 to L. To account for that, we introduce the interparticle εp = 1− l/l0
and total ε = 1−L/L0 strains, and denote the equilibrium state of the element at h0 as (εp, ε).



4

1234567890

Winter School on Continuous Media Mechanics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 208 (2017) 012007 doi:10.1088/1757-899X/208/1/012007

An applied small (probing) force f causes an additional small deformation u of the element.
Then the internal magnetic and elastic forces must change in order to balance this extra load,
i.e., the sum of the sample energy and the work of the applied force must assume minimum:

U(εp, ε)− fu = min . (2)

This problem can be solved by expanding the energy in the vicinity of the equilibrium at
f = 0. From that solution one obtains the parameter K = f/ε, that we term effective rigidity,
characterizing the ability of the considered model to resist deformation:

f

ε
=

(

A22 −
A2

12

A11

)

1

L0

; (3)

here Aij are the second partial derivatives of the energy. Then the ratio K̃ = K(h0)/K0, where
K(h0) is the rigidity of the mesoscopic sample under a magnetic field and K0 that calculated in
its absence renders the field effect on the sample rigidity.

Since the interparticle distance in the element undergoes hysteresis, the rigidity should behave
similarly. This conclusion is illustrated by figures 2 and 3, where, respectively, the field strength
dependencies of the interparticle distances q and the reduced rigidity K̃ are presented.

Figure 3. Rigidity of 2P mesoscopic elements with β = 2500 as a function of applied magnetic
field; the initial interparticle distances q0 are: 2.5 (1), 3 (2), 3.5 (3), 4 (4) .

As figures 2 and 3 show, under the increase of the external field, first, the particles approach
each other gradually that very slightly affects the rigidity of the system. Above a certain field
strength (it depends on the interparticle distance), a second equilibrium configuration for the
particle pair emerges, and this entails the second possible value of rigidity. As it is inherent to
hysteretic systems, the actual rigidity of the system depends on the strain history. With further
growth of the field, the bistability regime ends up, the collapsed state of the particles remains
the only possible and, accordingly, the mesoscopic element acquires the enhanced rigidity.

4. Mesoscopic element under the action of external forces

The stress-strain dependence is a fundamental mechanical property of a material. To get a
notion of how the external field affects this characteristic of our 2P structure element, let us
consider a system with interparticle distance q0 = 3.25 and a relative compliance β = 2500. Let
a uniform magnetic field of strength h0 = 0.015 be applied to the element along its axis. The set
of parameters is chosen in such a way that in the force-free state the sample is in the bistability
regime. Then on the end walls of the element a force of magnitude f , i.e., either compressing
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(negative) or stretching (positive), is exerted. Using our model, we obtain the stress-strain
diagram shown in figure 4a; here the dimensionless stress is defined as p/c1 = f/(c1S), where S
is the cross section of the cylinder and c1 the Mooney-Rivlin constant. Two possible rigidities of
the system reflecting the mechanical responses of two different configurations of particles within
the element cause the “doubling” of the diagram curves. In particular, they have different slopes
in the absence of any mechanical load (see points 1 and 3). An important circumstance revealed

Figure 4. a) The stress-strain diagram for the mesoscopic element with compliance β = 2500
and initial interparticle distance q0 = 3.25 under applied field h0 = 0.015. b) The stress-strain
diagram for the same mesoscopic element under variation of the applied field: h0 = 0.02 (1),
0.04 (2), 0.06 (3), 0.08 (4); note that the latter diagram does not have a loop in the considered
range of deformation and coincides with the upper curve of the other diagrams.

by figure 4 is that the increase of rigidity (caused by the particle collapse) can be provoked by an
external mechanical load. If the 2P element is magnetized, it is already slightly shrunk even in
the absence of an external mechanical force (see point 1). This “load-free” compression is due to
the well known magnetostriction effect inherent to MREs. A compressive force f causes further
reduction of the element length, and at weak f the shrinking is gradual. However, when the
force reaches a certain finite value, the particles collapse, and the strain changes abruptly (see
point 2). In terms of diagram 4a this means that the representing point jumps from the lower
branch of the curve to the upper one and after that moves along the latter. It is noteworthy
that, when the load is removed, the system does not return to its initial position (see point
3) but remains in a compressed state, thus justifying the concept of a “magnetic staple” [12].
Indeed, one needs some effort in the opposite direction, a tensile force (see point 4), to destroy
this structure. Because of that, the graphic image of the loading / unloading cycle in figure 4
has a loop shape, whose boundaries projected on the vertical axis mark the boundaries of the
bistability interval in terms of stress.

The above-presented considerations show that as soon as the mesoscopic element is prone
to magnetomechanical hysteresis, then its stress-strain curve would be loop-shaped under the
magnetic field of any intensity. This is illustrated in figure 4b that presents deformation cycles
for the same mesoscopic element with q0 = 3.25 and β = 2500. Note that a “magnetic staple”
that has formed inside an element with high compliance is hard to destroy. For that, the sample
should be stretched several times. Thus, in the diagram 4b for the element in the field 0.02
(cf. the diagram 4a) there is no reverse transition, see point 4. In other words, as soon as “the
magnetic staple” has once formed, it can break only under a substantial reduction or switching
off of the field. The figure shows also that the position of the loop depends on the magnitude
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of the applied field. Therefore, one sees that the mechanical properties of the 2P mesoscopic
element could be field-tuned, thus increasing or reducing its ability to resist deformation.

5. Homogenization

The above-presented 2P model allows one to understand the basics of the MRE internal structure
rearrangement and the subsequent change in the properties of those composites on the qualitative
level. In order to predict the properties of macroscopic samples, it is necessary to subject our
discrete model to some “homogenization”. Several approaches of that kind were developed
recently [13, 14, 15]. However, as our model takes into account only a single geometry—axially
symmetrical layout of the particles with respect to the external magnetic field—in here we
restrict our consideration by a very simple averaging procedure.

We present a macroscopic MRE sample to be an assembly of cylindrical samples—our 2P
mesoscopic elements—whose initial interparticle distances q0 are distributed according to a
certain law. All the cylinder axes are pointing the same direction along which the external
load is applied. Each element responds to it independently, as if it was cut from the whole
sample. Thus, any interaction at the boundaries between the individual elements is neglected.
Under these conditions, to calculate the elasticity modulus or the stretching / compression
stress, one just needs to average the corresponding mesoscopic characteristics over q0. This way
of material modelling is known as the Voigt hypothesis.

As is easy to understand, the resulting continuum model of a MRE has as its prototype a set of
2P mesoscopic elements connected in parallel. Assuming that the number of structure elements
in a macroscopic sample is very large, the averaging is done with a continuous distribution of
the interparticle distances. Thus, the “homogenized” rigidity of the model MRE is defined as

〈K(H0)〉 =

[

∫ qmax

0

0

K(q0, h0) f(q0) dq0

]

/

[

∫ qmax

0

0

F (q0) dq0

]

, (4)

where function F (q0) renders distribution of the pairs with respect to q0. As an example,
we assume quasi-normal distribution of the distances. That means that when discretizing the
standard formula for F (q0) we, first, limit ourselves by only non-negative values of q0 and,
second, truncate the distribution at q0 = 4.25 since this is the largest center-to-center distance
that our calculational scheme of the 2P element allows us to deal with. These restrictions are
taken into account in order to have F (q0) normalized to unity. Keeping the form of the function,
we set in it the “mean value” 〈q0〉 = 3.0 and “standard deviation” σ = 0.3. The resulting curve
is shown in figure 5. As seen, with the field growth the rigidity of the model macroscopic sample,
first, slightly decreases, and then increases. The rate of increase slows down gradually and finally
tends to zero when saturation regime is attained. The second part of the cycle (field diminution)
reveals the hysteresis loop of K̃(h0) of a considerable width.

The behavior of K̃(h0) can be easily explained with the help of figure 3 that renders the
rigidity changes of 2P mesoscopic elements with different q0’s. When the field is turned on,
the particles move towards each other and the stiffness decreases in all the elements. At the
field strength about 0.02, two different rigidities become available, see figure 5. As the field is
increased, the elements with smallest q0’s are first to collapse. However, the increase of rigidity
induced by such pairs is not enough to counterbalance the decrease induced by the elements
with larger q0, where the particles are yet at the first stage of convergence. In the considered
assembly, the majority of the pairs has the initial interparticle distances close q0 = 3. Because
of that, in the field h0 = 0.045 that provokes the collapse of those pairs, the rigidity undergoes
a fast increases. In the field h0 = 0.06 even particles that were at the farthest initial distance
are forced to collapse, and the sample rigidity saturates.

The stress–strain diagrams could be averaged similarly. In figure 6a the dashed line shows
the diagram for the MRE sample loaded in the absence of a magnetic field. Solid lines show
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Figure 5. Relative rigidity of the model MRE sample corresponding to quasi-normal
distribution of the 2P elements with 〈q0〉 = 3.0 and σ = 0.3 as a function of external magnetic
field.

the diagram obtained in the field h0 = 0.04. The point marks the initial state of the sample in
the field, that is, the equilibrium magnetically induced deformation under zero external stress.
According to figure 5, the rigidity of this MRE in the field h0 = 0.04 increases by about 10%, so
the slopes of the lower curve of the diagram in the initial position and the dashed curve differ
just a little.

So, one sees that, in general, the considered macroscopic MRE sample inherits the behavior
of its mesoscopic elements, with exception that the transitions between the the lower and upper
branches occurs smoothly. The conclusion that the stronger applied field the higher rigidity of
the composite in the initial state is also confirmed by the stress-strain diagram 6b, where the
slopes of the curves increase from point 1 to point 3 for successively increasing field strengths.

Figure 6. Stress-strain diagrams for the model MRE sample with relative compliance β = 2500:
a) in the absence of magnetic field (dashes) and under the field h0 = 0.015 (solid line); b) in
the field h0 = 0.02 (solid line), 0.04 (dashes), 0.06 (dots). The points mark the respective
field-induced deformations under zero external stress.

6. Conclusions

The model of a 2P mesoscopic structure element developed in Refs. [7, 8] was specialized to
describe the inner deformations which occur in MREs, which are free of external mechanical
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stress, under the action of an applied magnetic field. Herein, this model is extended for the
case where the element is subjected to a uniaxial load. This allows us to analyze the combined
magnetomechanical effects in the mesoscopic model system.

In particular, we show that a pure mechanical load is able to produce a strain hysteresis in
a 2P element that otherwise dwells in an equilibrium magnetized state. In a qualitative way
this proves that clustering of the particles (occurrence of “magnetic staples”), which changes so
much the macroscopic properties of the MREs, could be provoked by mechanical loads as well
as by magnetization as such.

An attempt to bridge the built up mesoscopic description with the macroscopic evidence is
done. In spite of a very simple approach (Voigt hypothesis), the predictions look reasonable,
promising and helpful for interpretation of the experimental data.
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