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Abstract. A three-dimensional model for deformation of metal matrix composite with
aluminum matrix and silicon carbide reinforcement particles is developed. The model accounts
for an internal structure of the composite, as well as rheology of its constituents. The model
is further used in numerical simulations in order to study the evolution of stress-strain state
parameters in a randomly-chosen composite microstructure fragment under uniaxial tension
and compression loading on micro- and macroscale. The parameters include the stress stiffness
coefficient, the Lode-Nadai coefficient and equivalent (von Mises) strain. It is found that local
deformation regions and internal tensile stress concentration regions appear in the material of
composite matrix. Adhering to a phenomenological damage theory, a damage development is
computed in the matrix metal. We present damage fields and damage distributions for uniaxial
tension and compression.

1. Introduction
Studies of mechanical behavior of composites under loading are crucial for the assessment of
reliability, durability and usability of machine parts and structural elements produced from
composites. Due to a hierarchical composite structure, these studies need to cover multiple
scale levels. The established modern paradigm for such studies is the multilevel approach for
describing structurally inhomogeneous materials [1–4]. Multilevel models of plastic deformation
and damage are advantageous over the classical approach adopted in mechanics in a way that
they allow one to observe stress concentration phenomenon leading to microcrack emergence at
early deformation stages.

It is known that under conditions of a complexly changing stress-strain state, the microscopic
crack stage (also known as the hidden or scattered damage accumulation stage) is described
phenomenologically by damage criteria (e.g. Kolmogorov criterion, Lemaitre criterion, etc.) and
it indirectly characterizes damage evolution in a microscopic volume of continuous medium [5–8].
The damage level is associated with local plastic strain and assessed by effective plastic strain
before failure which is in its turn dependent on the evolution of dimensionless stress-strain state
parameters: the stress stiffness coefficient and the Lode-Nadai stress state coefficient. Thus, in
order to adequately describe damage process, one needs to acquire the data on stress-strain state
history under severe plastic deformation conditions. To achieve this goal, numerical simulations
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Figure 1: The model material matrix composite microstructure.

employing different software are widely used [2, 3, 9–12]. Simulation results allow one to obtain
sufficient data for further computations.

This paper presents a numerical simulation of damage accumulation in a randomly-chosen
microstructure fragment of an aluminum matrix composite under uniaxial loading conditions.
The simulation is based on the multilevel approach for describing a material, a damage mechanics
criterion and considers the rheology of composite constituents.

2. Material and Methodology
A specific metal matrix composite is considered to be a model material. The constituents of the
composite are 99.8% commercially pure aluminum and silicon carbide reinfig:forcement particles.
The dominant particle shape is considered to be irregularly prismatic; particle sizes are in ranges
of 1 . . . 5 µm and 15 . . . 20 µm.

Particles make up 50 vol% of the composite. The composite microstructure is depicted in
Fig. 1, which is obtained by means of scanning electron microscope. Experimental studies
observe strong adhesive bonding between the matrix and reinforcement particles [13, 14].

The computational model has been implemented adhering to the two-level structural-
phenomenological approach, which connects problem solutions on micro- and macroscale [15, 16].
According to the approach, the composite volume on microlevel is modeled by three-dimensional
continuum which represents the aluminum matrix with embedded silicon carbide particles.
The microstructural properties of the metal matrix composite have been chosen according to
metallographic investigation [13, 14]. The composite microvolume has the shape of a cube with
the edge size of 30 µm. The structurally inhomogeneous microvolume is surrounded with a buffer
layer. The layer has smeared macroscopic mechanical properties of the composite and dilates
evenly from microvolume borders. The volume thickness is equal to the microvolume linear size.
Thus, the whole microvolume is a cube with edge size of 90 µm This problem statement allows
us to connect solutions on micro- and macroscale and properly meet a challenge of atypical
boundary behavior. An in-house software was developed by authors in previous work [17].
The software is capable of three-dimensional model generation for structurally inhomogeneous
materials with a complex internal structure. It is compatible with ANSYS finite element suite
input format. The three-dimensional metal matrix composite computational model is depicted
in Fig. 2. Detailed information is published in [18, 19].



3

1234567890

Winter School on Continuous Media Mechanics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 208 (2017) 012037 doi:10.1088/1757-899X/208/1/012037

Figure 2: Three-dimensional metal matrix composite computational model.

Rheological properties of commercially pure aluminum were set as strain-hardening curves
according to compression tests with cylindrical specimens on macro-level. Tests were conducted
with a strain rate of 1 s−1 at 300 ◦C1. The materials of the matrix and the buffer layer have been
considered to be isotropic plastically incompressible elasto-plastic medium. The silicon carbide
particle material has been considered to be isotropic linear plastic. The elastic proprieties have
been set as follows: Youngs modulus E = 70 GPa and the Poisson coefficient ν = 0.34 for pure
aluminum [20]; E = 380 GPa and ν = 0.19 for silicon carbide [21]. The elastic proprieties of the
buffer layer have been obtained by the rule of mixtures [22] using composite constituent volume
fractions as follows: E = 225 GPa and ν = 0.265.

The numerical simulation of metal matrix composite deformation has been conducted in the
quasi-static statement with ANSYS finite element suite installed on a URAN GPU cluster of
IMM UB RAS. Boundary conditions have been set in displacements of buffer layer facets in
such a way that metal matrix composite could be considered to be 1/8 part of a body being
subjected to uniaxial tension or compression along y-axis. Some facets have been placed on
symmetry planes. The displacements have been set in such a way that equivalent macroscopic
strain of tension or compression could reach ε = 0.2 on the final load step.

The simulation allowed us to obtain stress tensor σij and strain increment ∆εij tensor data
in each node of the metal matrix composite computational model. The data have been further
used to determine the stress stiffness coefficient kn and the Lode-Nadai coefficient µσn on each
computation step:

kn =
σ

T
, (1)

where σ denotes mean normal (hydrostatic) stress and T denotes tangential stress intensity
equal to shear yield stress in the plastic region.

µσn = 2
σ2 − σ3
σ1 − σ3

− 1, (2)

1 Experimental research was conducted in Collective centre “Plastometria” of IES UB RAS
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where σ1, σ2, σ3 denote principal stresses on n-th computational step.
The equivalent (von Mises) strain increment on n-th computation step has been expressed in

terms of strain tensor component increments ∆εij obtained on this step:

∆εn =

√
2

3
∆εij∆εij (3)

Thereafter, the whole accumulated equivalent deformation ε in every node is computed as
follows:

ε =
N∑
n=1

∆εn, (4)

where N denotes total computational step number for deformation.
In [13, 14] it is determined experimentally that in metal matrix composite specimen loading

process, first cracks appear in the matrix. Considering this failure behavior, the matrix damage
accumulation has been studied in scope of this work. The phenomenological theory authored by
Kolmogorov V L [6, 7] has been used. This theory assumes that material damage ω lies in range
0 . . . 1, where 0 means undeformed material and 1 implies material failure and crack emergence.
The material damage on computational step of deformation is equal to the ratio of equivalent
strain increment to equivalent plastic strain to fracture and damage accumulation considered to
be linear. The fracture locus of commercially pure aluminum for 300 ◦C has been taken from the
experimental investigation [23]. A fracture locus determine the dependence of ultimate shear
strain Λf at fracture on stress state parameters k and µσ: Λf = Λf (k, µσ). Ultimate strain at

fracture was calculated as follows: εf = Λf/
√

3
The damage model has been further used to compute damage and damage accumulation in

every finite element node representing the metal matrix. A node has been considered to be
destroyed if an accumulated damage in this node reached 1. Thus the condition of failure after
N computational steps has the following notion in every finite element mesh node:

ω =
N∑
n=1

∆εn
εf (kn, µσn)

= 1 (5)

For considered loading scenarios, damage distribution fields have been visualized for each
computational step in whole volume of the metal matrix.

3. Result and Discussion
Finite element method simulations show that the stress-strain state in the matrix on microscale
is significantly inhomogeneous on every computation step. Even on initial loading stages,
the matrix material appears to have tensile stress concentration regions (characterized by
k > 0), as well as substantial local plastic deformation regions. These peculiarities emerge
in close proximity of reinforcement particles. This holds true both for tension and compression
simulations. Volume fraction of such regions increases with equivalent macroscopic strain. For
further information on the microvolume stress-strain state peculiarities and stress-strain state
evolution during the deformation process, we refer to [18, 19].

It is known that severe tensile stresses contribute to intensive plastic dilatancy and accelerate
fracture process [5, 6, 24]. This conclusion is also confirmed by numerical simulations of damage ω
accumulation in the matrix metal within microvolume. It is found that the most possible regions
of failure initiation (i.e. regions, where equation (5) holds true) are strain localization regions
where adverse tensile stresses prevail. As an example, figures 3 and 4 depict accumulated damage
distribution in central cross section xy of the metal matrix within the microvolume depending
on equivalent macroscopic strain ε for uniaxial tension and compression.
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(a) (b)

Figure 3: Damage ω distribution in matrix. Central xy cross-section of metal matrix
microvolume, tension simulation at equivalent macroscopic strain ε = 0.04 (a) and ε = 0.2 (b).

(a) (b)

Figure 4: Damage ω distribution in matrix. Central xy cross-section of metal matrix
microvolume, compression simulation at equivalent macroscopic strain ε = 0.04 (a) and
ε = 0.2 (b).

Obviously, a damaged region grows with increase of equivalent macroscopic strain. On the
tension simulation step with equivalent macroscopic strain ε = 0.04 the failure criterion (5)
holds true for order of 30% nodes, whereas the step with ε = 0.2 shows that more than 70%
of nodes would experience failure. Compression loading scenario is less adverse in terms of
internal damage. In case of compression for analogous equivalent macroscopic strain, the failure
criterion (5) holds true for less than 3% and 10% of matrix nodes within the microvolume.

4. Conclusion
Adhering to the multilevel material description approach, the three dimensional computational
model of metal matrix composite deformation has been developed. The model takes into
account internal structure of the composite material, as well as the rheology of its constituents.
The numerical simulations with randomly-chosen microvolume of Al/SiC composite have been
conducted for uniaxial tension and compression.
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Adhering to the phenomenological theory of damage, a simulation of damage accumulation
in composite matrix has been conducted. The evolution of stress-strain state parameters (the
stress stiffness coefficient and the Lode-Nadai coefficient) has been taken into account. It is
found that for considered loading scenarios the most probable failure initiation regions are
regions with plastic strain localization and adverse stress state with prevalence of tensile stresses.
Initial cracks can emerge in these regions, spreading through the volume of the composite with
deformation increase.
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