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Abstract. In work the technique of calculation of elements of three-dimensional reinforced 

concrete substructures located in a soil, interacting with each other through rubber linings is 

realized. To describe the interaction of deformable structures with the ground, special "semi-

infinite" finite elements are used. A technique has been implemented that allows one to 

describe the contact interaction of three-dimensional structures by means of a special contact 

finite element with specific properties. The obtained numerical results are compared with the 

experimental data, their good agreement is noted. 

1.  Introduction 

In modern mechanics of a deformable solid, the problems of non-linear deformation of elements of 

three-dimensional structures with each other and with the surrounding soil are still relevant and in 

demand in construction, road construction, foundation engineering, etc. Many authors have dealt with 

the nonlinear problems of mechanics, in particular, papers [1-11] can be noted in which theoretical 

features of the construction of geometrically and physically nonlinear deformation of structures are 

noted. Practical problems in various areas of mechanics of a deformed solid are usually solved 

numerically [12-19]. It is also possible to note realized methods of contact interaction problems [20-

24] and hyperelastic behavior of three-dimensional structures [25-29]. This paper develops a 

mathematical model and realizes a numerical algorithm for studying the stress-strain state of three-

dimensional reinforced structures interacting with each other and with the water-saturated soil in 

which they are located. 

2.  Formulation of the problem 

The purpose of this paper is to construct a technique for calculating the stress-strain state of three-

dimensional structures located in the soil, the elements of which interact with each other. The object of 

calculation is the lining of the subway tunnel from prefabricated reinforced concrete, geometrically 

representing a cylindrical shell located in the soil mass, under the influence of the weight of the above 

rocks and the longitudinal compressive force that occurs when this structure is created. The main 

feature of the design under consideration is the fact that a similar lining of segment blocks is being 

constructed, which interact with each other through special lining that does not completely cover the 

interface surfaces, which entirely transmit only compressive forces and partially tangential forces 



2

1234567890

Winter School on Continuous Media Mechanics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 208 (2017) 012005 doi:10.1088/1757-899X/208/1/012005

within the frictional forces. Fig. 1 partially shows three rings of lining, in real proportions, with 

conditionally remote blocks to illustrate their relative location. 

 

Figure 1. Finite-element partitioning of three rings of the lining of the subway tunnel (some blocks 

have been removed for clarity). 

The calculation was carried out by FEM on the basis of twisted 20-node isoparametric finite 

elements of the three-dimensional theory of elasticity with quadratic approximation of geometry and 

displacements. The mesh of similar elements used to calculate the described construction is also 

shown on Fig.1. 

3.  Modeling of mechanical contact through gaskets 

The mechanism of interaction of blocks through the lining can be illustrated on Fig. 2, where various 

variants of deformation of the overlays are depicted, depending on the forces exerted by the blocks on 

each other. 

 

Figure 2. The mechanism of interaction of blocks through gaskets. 

 

For the situation on Fig. 2a, we have that in the overlays there is a stress of compression 
A B

H     and deformation 
H H HE  , where 

HE  is the modulus of elasticity of the lining 

material. The geometrical condition for the presence of this situation is  A BH H H  , where AH , 

BH  is the original thickness of the linings, and H is the distance between the surfaces on which they 

are fixed.  
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The situation on Fig. 2b arises in the presence of preliminary reduction, i.e.  A BH H H   and, 

in this case, too, A B

H    , 
H H HE   is true. 

On Fig. 2c there is no force action and the patches move freely. In this case  A BH H H  , 

0H  . 

Fig. 2d shows free slip, in which tangential stresses do not arise, which is realized when 

 A BH H H  , and in this case 0.H   

Fig. 2e illustrates the elastic interaction with compression and shear without slipping. A similar 

situation is possible with  A BH H H   and for stresses and deformations in the overlays can be 

written: A B

H    , A B

H    , 
H H HE  , 

H H HG  . An additional condition here 

should be the condition ,H Hf  where f  is the linear coefficient of friction. 

If these conditions are not fulfilled, the situation appears on Fig. 2f. In this case A B

H    , 

,H Hf   
H H HE   and slip is observed. 

All these situations are modeled within the framework of continuum mechanics, i.e. when two 

overlays are presented in the form of a single material with specific properties. The problem obtained 

is non-linear and requires the use of special techniques for solving it. A characteristic feature of this 

nonlinearity is that for normal stresses there are limitations on deformation ( A BH H H  , i.e. the 

mutual deformation of the linings can’t be greater than their total thickness), and for tangential 

stresses, by their limiting values, that determine the possibility of slippage. 

To solve the formulated physically nonlinear problem on the basis of the virtual work equation, an 

iterative process is constructed, which is a combination of the initial stress method and the additional 

deformation method. The basic for the determination of the k-th iteration is the following variational 

equation 
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where ˆ k

H  and ˆk

H  are determined as the differences between the corresponding values obtained from 

linear relationships of the theory of elasticity and their real values, which depend on the interaction 

mechanism (Fig. 2). 

4.  Contact finite element 

To implement the previously described mathematical model of the interaction of overlays within the 

framework of the FEM, the so-called contact element is determined. Geometrically it is a shell 

quadrangular element with 16 nodes. As initial information for it, the radii-vectors of the points 

defining the lower (odd numbers) and the upper (even numbers) of the surface are given, and the 

initial thickness A BH H H  , which can be constant on the element, may vary (in this case, their 

nodal values are specified). 

Approximations of the face surfaces are introduced 

 
           

8 8

2 1 2

1 1

, , , , , , ,i i i i

i i

r r N r r N        
 



 
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where  ,iN    - are the known form functions for the two-dimensional quadratic approximation of 

the Sirendip family. To approximate the displacement vector, we use a similar representation 
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In the process of deformation, initially parallel facial surfaces 
 

r


 and  
r


 cease to be so. An 

illustration of this situation is given on Fig. 3, where it is clear that the unit vectors of the normals 
 

3 ,P
  

3P


 are essentially different. Therefore, we will determine all geometric, kinematic and power 

characteristics on both face surfaces independently. In other words, the stress-strain state will be 

determined independently in each overlay (adjacent, respectively, to the surfaces 
 

r


 and  
r


), which 

will allow more correctly simulate their state when slipping relative to each other. 

 

Figure 3. Schematic representation of the face surfaces of the contact elements. 

The distances 
 

H


  and 
 

H


  from one face to the other, along the normal to it, are determined in 

the form 

 
                       
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      (4) 

These values are basic in judging the nature of the interaction between the overlays (the 

classification is shown in Fig. 2). The compression deformation is defined as 

  
 

 
 

, .H H

H H H H

H H
 

 
   
          (5) 

The definition of tangential deformations and stresses (for the estimation of frictional forces) 

requires the introduction of local coordinate systems , ,x y z    oriented along the unit vectors 1 2 3, ,P P P  

for each of the face surfaces. The calculation of the derivatives along these directions is performed in a 

known manner and the relations for the shear deformation are taken in vector form 

 1 3 2 3, .z y y z

V V V V
P P P P

z x z y

   
 

   
          

   
.       (6) 

5.  Modeling the interaction of the lining with the soil 

To reproduce the interaction of the lining blocks with the soil, without increasing the dimension of the 

problem, so-called "semi-infinite finite elements" or "finite elements with remote nodes" were used. 

They are 16-node crooked parallelepipeds, in which the inner curved surface mates with the upper 

surface of the lining blocks, and the outer surface is removed from the inner surface for considerable 

distances. 

The main task of this element is to reproduce the elastic repulsion of the soil massif when 

deforming the rings of the lining. Therefore, the movements of remote nodes are considered to be 

zero. An additional argument in the validity of this assumption may be the following statement: the 

construction of the tunnel is conducted in a steady mass of soil and must not be accompanied by its 

deformations at a considerable distance from the rings of the lining of the tunnel. 
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The technology of constructing the stiffness matrix of such an element practically coincides with 

that described in [30-32] for a 20-node EM. The only difference is that in the mailing the component 

of the rigidity matrixes of these EMs only the stiffnesses that relate to the adjacent nodes are involved, 

and the nodes with zero displacements are not assigned global numbers. This allows us to limit 

ourselves only to the degrees of freedom defined on the outer surface of the lining blocks, which have 

already been introduced in modeling the corresponding concrete arrays. 

6.  Comparison of the results of calculations with experimental studies 

To assess the reliability of the calculations and evaluate the developed methodology, their results were 

compared with the results of monitoring studies of the lining of the tunnel being built. In particular, 

special devices were installed on the ring blocks, measuring their deformations (strain gauges) before 

placing these blocks in the lining of the tunnel. Then, after sufficient time necessary to stabilize the 

stress state, both in the lining and in the soil massif surrounding it, the readings of circumferential and 

longitudinal deformations were taken. The time of this stabilization was determined by systematic 

observation of the instrument readings and evaluation of their variation over time. 

A comparison of the results of experimental and numerical studies of these rings on the example of 

circumferential stresses for 172-th and 173-th lining rings is given on Fig. 4-5. The dashed line 

corresponds to experimental data, solid line - calculation without taking into account the water 

saturation of the soil, dash-dotted line - calculation taking into account the hydrostatic pressure of 

groundwater. 

 

 

 

Figure 4. Circumferential stresses in one of the 

rings of the lining of the subway tunnel 

(numerical calculation and experimental data). 

 Figure 5. Longitudinal stresses in one of the 

rings of the lining of the subway tunnel 

(numerical calculation and experimental 

data). 

7.  Conclusion 

Proceeding from the obtained results, it should be noted that the developed numerical method for 

studying the stressed-deformed state of the lining rings of the subway tunnel in a three-dimensional 

setting, with modeling of the contact interaction of the blocks with each other and with the 

introduction of "semi-infinite" finite elements to reproduce the elastic backing of the soil, gives results 

that are in good agreement with Data of full-scale tests. Consequently, it is possible to calculate such 

designs on its basis and obtain reliable results. 

Acknowledgments 

The reported study was supported by Government of the Republic of Tatarstan and RFBR research 

projects No. 15-41-02555 and 15-41-02557. 



6

1234567890

Winter School on Continuous Media Mechanics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 208 (2017) 012005 doi:10.1088/1757-899X/208/1/012005

 

References 

[1] Paimushin V N 2008 Journal of Applied Mathematics and Mechanics 72 (5) 597–610 

[2] Badriev I B, Banderov V V, Garipova G Z, Makarov M V and Shagidullin R R 2015 Applied 

Mathematical Sciences 9 (82) 4095–4102 

[3] Badriev I B, Banderov V V, Makarov M V and Paimushin V N 2015 Applied Mathematical 

Sciences 9 (78) 3887–3895 

[4] Badriev I B, Banderov V V and Zadvornov O A 2013 Applied Mechanics and Materials 392 

188–190 

[5] Badriev I B, Garipova G Z, Makarov M V and Paimushin V N 2015 Research Journal of 

Applied Sciences 10 (8) 428–435 

[6] Badriev I B and Shagidullin R R 1995 Journal of Mathematical Sciences 73 (5) 519–525 

[7] Berezhnoi D V and Paimushin V N 2011 Journal of Applied Mathematics and Mechanics 75 (4) 

447-462 

[8] Berezhnoi D V, Paimushin V N and Shalashilin V I 2009 Mechanics of Solids 44 (6) 837-851 

[9] Zienkiewicz O 1977 The finite element method (London Mc Graw-Hill) 787 

[10] Wilkins M L 1967 Vychislitelnye metody v gidrodinamice (Mir) 212-263 

[11] Evans M W and Harlow F H 1957 Los Alamos Scientific Laboratory Report No. LA-2139 (Los 

Alamos) 

[12] Sultanov L U 2015 Procedia Earth and Planetary Science 15 119–124 

[13] Davydov R L and Sultanov L U 2013 PNRPU Mechanics Bulletin 1 81–93 

[14] Golovanov A I and Sultanov L U 2005 International Applied Mechanics 41 (6) 614–620 

[15] Sultanov L U 2014 Applied Mathematical Sciences 8 (143) 7117–7124 

[16] Sultanov L U and Davydov R L and 2014 Applied Mathematical Sciences 8 (60) 2991–2996 

[17] Sultanov L U 2016 Lobachevskii Journal of Mathematics 37 (6) 784–790 

[18] Sagdatullin M and Berezhnoi D 2014 Applied Mathematical Sciences 8 (35) 1731–1738  

[19] Sagdatullin M and Berezhnoi D 2014 Applied Mathematical Sciences 8 (60) 2965–2972 

[20] Sachenkov O, Kharislamova L, Shamsutdinova N, Kirillova E and Konoplev Yu 2015 IOP 

Conference Series: Materials Science and Engineering 98 012079 

[21] Shigapova F A, Mustakimova R F, Saleeva G T and Sachenkov 2015 O A International Journal 

of Applied Engineering Research 10 (24) 44711–44714 

[22] Sachenkov O A, Mitryaikin V I, Zaitseva T A and Konoplev Yu G 2014 Applied Mathematical 

Sciences 8 (159) 7889–7897 

[23] Berezhnoi D V, Sachenkov A A and Sagdatullin M K 2014 Applied Mathematical Sciences 8 

(127) 6341–6348 

[24] Berezhnoi D V, Sachenkov A A and Sagdatullin M K 2014 Applied Mathematical Sciences 8 

(143) 7107–7115 

[25] Abdrakhmanova A I and Sultanov L U 2016 Materials Physics and Mechanics 26 (1) 30–32 

[26] Davydov R and Sultanov L 2013 Sixth International Conference on Nonlinear Mechanics 

(ICNM-VI) 64–67 

[27] Davydov R L and Sultanov L U 2015 Journal of Engineering Physics and Thermophysics 88 (5) 

1280–1288 

[28] Sultanov L U and Fakhrutdinov L R 2013 Magazine of Civil Engineering 44 (9) 69–74 

[29] Sultanov L U and Davydov R L 2013 Magazine of Civil Engineering 44 (9) 64–68 

[30] Berezhnoi D V, Balafendieva I S., Sachenkov A A and Sekaeva L R 2016 IOP Conference 

Series: Materials Science and Engineering 158 012018 

[31] Shamim M R and Berezhnoi D V 2016 IOP Conference Series: Materials Science and 

Engineering 158 012083 

[32] Berezhnoi D V and Sagdatullin M K 2015 Contemporary Engineering Sciences 8 (23) 1091-

1098 


