
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

29th Symposium of Malaysian Chemical Engineers (SOMChE) 2016  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 206 (2017) 012036 doi:10.1088/1757-899X/206/1/012036

 

 

 

 

 

 

Application of Artificial Neural Network to Predict Colour 

Change, Shrinkage and Texture of Osmotically Dehydrated 

Pumpkin 

S Y Tang1, J S Lee2, S P Loh3, H J Tham1* 

1 Chemical Engineering Program, Faculty of Engineering, Universiti Malaysia Sabah, 

Jalan UMS 88400 Kota Kinabalu, Sabah, Malaysia 

2 Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS 

88400 Kota Kinabalu, Sabah, Malaysia 

3 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, 

Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia 

*E-mail: hjtham@ums.edu.my 

 

Abstract. The objectives of this study were to use Artificial Neural Network (ANN) to predict 

colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of 

process variables such as concentration of osmotic solution, immersion temperature and 

immersion time on the above mentioned physical properties were studied. The colour of the 

samples was measured using a colorimeter and the net colour difference changes, ∆E were 

determined. The texture was measured in terms of hardness by using a Texture Analyzer. As 

for the shrinkage, displacement of volume method was applied and percentage of shrinkage 

was obtained in terms of volume changes. A feed-forward backpropagation network with 

sigmoidal function was developed and best network configuration was chosen based on the 

highest correlation coefficients between the experimental values versus predicted values. As a 

comparison, Response Surface Methodology (RSM) statistical analysis was also employed. 

The performances of both RSM and ANN modelling were evaluated based on absolute average 

deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The 

results showed that ANN has higher prediction capability as compared to RSM. The relative 

importance of the variables on the physical properties were also determined by using 

connection weight approach in ANN. It was found that solution concentration showed the 

highest influence on all three physical properties. 

1.Introduction 

Pumpkin (Cucurbita pepo L.) has been used for human consumption and animal feed [1]. It is a fruit 

that can be taken fresh or cooked, or made into various kind of food such as soups, pies and bread. 

However, pumpkin is still considered as underrated fruits in the food industry. Nowadays, the increase 

of public awareness for a healthy lifestyle leads to the consumption of high nutritional and health 

related food material including processed pumpkin. Pumpkin is a good source of carotenoids, contains 

mainly α- carotene and β-carotene as well as minerals e.g potassium, phosphorus, magnesium, iron 
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and selenium. Besides, it is also a low caloric food [2] and contains phenolics, flavonoids, 

polysaccharides, vitamins, and other substances that are good for health [3]. However, fresh pumpkin 

is very sensitive to microbial spoilage, even at refrigerated conditions, hence, it must be processed to 

dried or frozen products [4]. 

Drying is the most widely applied method to preserve fruits and vegetables. However, high heat 

can cause excessive damage to the foods.  Hence, osmotic dehydration (OD) is often used as a pre-

treatment before drying process. Osmotic dehydration is a method to partially reduce the moisture 

content of fruits or vegetables, with the purpose to extend the shelf life of food materials [5]. Due to 

the mild condition used, it can reduce the damage of heat to the flavour and colours of fruits or 

vegetables, prevent spoilage and reduce energy consumption. It had been applied to fruits such as 

apple, banana, kiwi fruits, mango and etc [6–10].  

Dehydration process leads to alteration of chemical properties, nutritional values and physical 

properties of food products such as colour, food shape (shrinkage) and texture [9]. Colour of a food 

product is the most important quality parameter considered by the consumers, and it has high influence 

in the acceptance of a product [11]. This quality may be altered during processing, depending on the 

water content in foods, particularly dried foods. Studies conducted on the colour changes of fruits 

during OD were reported. For example, Falade et al. [12] investigated the effects of OD on the colour 

change of watermelon. It was observed that the colour intensity increase with the osmotic solution 

concentration. Krokida et al. [13] studied the colour changes of apple and banana during OD. 

Osmotically treated samples show less browning than untreated sample and lightness L decreased 

slightly, while redness a, yellowness b increased slightly. Another physical change of food during OD 

is shrinkage. The volume and food shape of products will be altered during the dehydration process 

[14]. Among studies reported on the volumetric shrinkage during OD, include strawberries [15], 

mango [16] and tomatoes [17]. Texture is a multi-parameter attributes and also one of the sensory 

property [18]. Several studies investigated the effect of OD on texture of some fruits, such as 

pineapple [19], apple [20], cucumber [21], strawberry [22], guava, melon and papaya [23].  

Artificial neural network (ANN) modelling is commonly utilized due to its capability of relating 

the input and output parameter by learning from examples through iteration, without requiring a prior 

knowledge on the relationships between the process variables [24].  ANN has been applied 

successfully in modelling of physical properties of foods. Zenoozian et al. [25] used ANN and image 

analysis to predict the colour intensity (DE), shrinkage percentage as well as Heywood shape factor of 

osmotically dehydrated and air-dried pumpkin pieces. Zenoozian and Devahastin [26] also applied 

wavelet transform coupled with ANN to predict physicochemical properties of osmotically dehydrated 

pumpkin. Chen et al. [27] used multi-layer ANN models with three inputs (concentration of osmotic 

solution, temperature, and contact time) to predict five outputs (drying time, colour, texture, 

rehydration ratio, and hardness) during osmo-convective drying of blueberries. Youssefi et al.[28] 

employed ANN with three inputs (carrier type, carrier concentration, and concentration of crystalline 

cellulose) to predict the quality parameter of spray-dried pomegranate juice with five outputs (drying 

yield, solubility, colour change, total anthocyanin content, and antioxidant activity).  

Response surface methodology (RSM) is a statistical technique used for experimental design, data 

analysis and modelling. It is widely used to investigate the relationship between process parameters 

and output, optimization of the operating conditions and responses in order to fulfil customer demands 

and target specifications [29]. There are numerous studies on the optimized conditions for osmotic 

dehydration process using RSM, such as papaya [30], diced green pepper [31], cantaloupe [32], 

pumpkin [33] and so on. However, only several studies on the prediction of physical properties of 

osmotic dehydration process have been published, such as potato [34] and Carrot [35]. 

2.Materials and Methods 

2.1. Fresh Material 
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Pumpkins were purchased from a local market. The initial moisture content of the fresh pumpkin 

varied within 92 ± 0.2% (w.b.). Commercial sucrose and salt were also purchased from the local 

supermarket. 

2.2. Experimental Procedure 

At the beginning of each experiment, pumpkin was cleaned, peeled and cut into slab with dimensions 

of 60 mm x 15 mm x 5 mm. Osmotic solution with the desired concentration using commercial 

sucrose, sodium chloride solution and distilled water was prepared. The independent variables were 

sucrose concentration (30, 45 and 60°Brix), solution temperature (35, 50 and 65℃) and immersion 

time (90, 150 and 210 min). The range of process variables chosen were the typical range used in OD 

processes [9,36,37]. All osmotic solutions consist of 5%w/w sodium chloride. The concentration of 

osmotic solution was obtained using a refractometer. The experiment was conducted in a water bath 

(Memmert, WB 14) to maintain a constant temperature. The pumpkin to solution ratio was fixed at 

1:10. The osmotic solution was agitated manually at every 30 minute interval to avoid localize dilution 

of sucrose solution. After the osmotic dehydration treatment, pumpkin slabs were removed from the 

osmotic solution and gently blotted with kitchen towel to remove excess sucrose solution, and kept in 

a sealed bag until experimental determinations. All the experiments were performed in triplicate, and 

the average value was used for the determination of colour changes, shrinkage and texture. 

2.3. Determination of colour 

Colour of pumpkin slabs were measured using Hunterlab Colorflex (Hunter Associates Laboratory 

Inc, Mumbai). The meter was calibrated using the manufacturer’s standard white and black plate. The 

colour of L*a*b* values were obtained directly from the meter. The net colour difference (∆E) was 

calculated with the equation 1 [38]: 

 ∆E = √(L2
∗ − L1

∗ )2 + (a2
∗ − a1

∗ )2 + (b2
∗ − b1

∗)2                                                   (1) 

where L* represents lightness, a* represents redness and b* represents yellowness.  

2.4. Shrinkage 

To determine the shrinkage of osmotically dehydrated pumpkin slices, volume displacement method 

was used. Shrinkage is expressed in terms of the percentage change of the sample’s volume as 

compared with its original volume [39]. 

%S = (
Vi−Vf

Vi
) × 100                                                     (2) 

where Vi and Vf  are the volumes of the samples at the starting and at the end of osmotic dehydration 

experiment. 

2.5. Texture Profile Analysis (TPA) 

For determination of sample’s firmness, Texture Analyzer (TA.XT Plus, Stable Micro System Ltd, 

US) was used to measure the hardness of samples. All measurements were conducted at room 

temperature of 25℃. The maximum force measurement was carried out using a 5 kg loading cell and a 

knife blade probe (width 7 cm, thickness 3 mm). The test speed is 5.0 mm/s. The knife blade probe cut 

the samples placed on a mounted fixed table. The blade was lowered until almost contacted the surface 

of the plate. Each sample was cut one time and repeated 3 times with 3 samples for each condition. 

2.6. Artificial Neural Network 

In this study, Neural Network Toolbox 7.12.0 of MATLAB (Mathwork, 2011) software was used. A 

feed forward multi-layered ANN trained by back propagation (BP) algorithm was selected and trained 

with three input variables which were sucrose concentration, solution temperature and immersion time 

and colour changes, shrinkage and texture as the output of the model. The general scheme of the ANN 

network is shown in Fig1.  
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Figure 1. Structure of feed forward multi-layer ANN. 

In this study, the tangent sigmoid transfer function (equation 3 and equation 4), and pure linear 

transfer function were applied at the hidden layer and output layer by trial and error method. The 

tangent sigmoid transfer function was selected as the activation function for both the hidden layer and 

the output layer, due to the lower calculated mean square error (MSE) when compared with linear 

function.  

                                                                     sig(x) =
1

1+e−x                                                                 (3)             

                                                                                                                              

                                                                        tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                                 (4) 

                                           

In order to find the best networks, 27 sets of data were used for three different concentration, three 

temperatures and three immersion time. The data were randomly divided into three partitions, 70% in 

the training set, 15% in the validation set and 15% in the test set. The number of neurons varied from 3 

to 12 were used in the hidden layer. The adopted learning function was “trainlm”. “Trainlm” is an 

iterative technique that updates the connection weight and bias values according to Levenberg-

Marquardt (LM) algorithm. The training process was conducted for 1000 epochs. Both input and 

output variables were normalized between 0 to 1 for reduction of network error. The norrmalized 

equation applied is as follows: 

                        𝑌𝑛 =
𝑌𝑎−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
                                                                   (5) 

 

where Yn, Ya, Ymin and Ymax are normalized value, actual value, minimum value and maximum value, 

respectively. The evaluation of performance of the ANN was based on MSE and the highest 

correlation coefficients between the experimental values versus predicted values (R2). This is to ensure 

the accuracy of the neural network to produce the output that are closer or equal to the experimental 

values.  

2.7. Response Surface Methodology 

A full factorial experimental design was generated with the Design-Expert 8.0.7.1 software. The same 

independent process variables were selected, i.e. sucrose concentration (X1), solution temperature (X2), 

and immersion time (X3). A second order polynomial equation was used to fit experimental data and 

the quadratic model which includes the linear model can be described as: 

                                𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗 +𝑘
𝑗=1 ∑ 𝛽𝑗𝑗𝑥𝑗

2 +𝑘
𝑗=1  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑒𝑖

𝑘
𝑗=1                                       (6)  

where Y is the response; 𝐱𝐢  and 𝐱𝐣  are independent variables, 𝛃𝟎 , 𝛃𝐢 ,  𝛃𝐢𝐢 ,  𝛃𝐢𝐣  are the regression 

coefficients for intercept, linear, quadratic and second-order terms, respectively; k is the number of 

parameters, and 𝐞𝐢 is the error [40]. 
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2.8. Comparison of RSM and ANN Performance 

In order to evaluate the performance of RSM models and ANN models, error analysis was performed 

in terms of  Root Mean Square Error (RMSE), Model Predictive Error (MPE), and Correlation of 

Determination (R2) between predicted and experimental values. 

           RMSE = √
∑ (𝑌𝑖,𝑒𝑥𝑝−𝑌𝑖,𝑝𝑟𝑒𝑑)2𝑛

𝑖=1

𝑛
                                                       (7) 

           MPE(%) = 
100

𝑛
∑ |

(𝑌𝑖,𝑒𝑥𝑝−𝑌𝑖,𝑝𝑟𝑒𝑑

𝑌𝑖,𝑝𝑟𝑒𝑑
|𝑛

𝑖=1                                               (8)  

R2 = 1 −
∑ (𝑌𝑖,𝑝𝑟𝑒𝑑−𝑌𝑖,𝑒𝑥𝑝)2𝑛

𝑖=1

∑ (𝑌𝑖,𝑝𝑟𝑒𝑑−𝑌𝑖,𝑚)2𝑛
𝑖=1

                                                    (9) 

 

where Yi,exp was the experimental value of the ith experiment; Yi,pred  was the predicted value of the ith 

experiment, n was the number of experiment and Yi,m was the average of the experimental value. 

3.Result and Discussion 

3.1. ANN modelling 

The optimal number of neurons in the hidden layer of the neural network are examined by varying the 

number of neurons in the hidden layer using trial and error method. ANN optimization process need 

training to reduce the error function (MSE) by searching for a set of connection weights and bias that 

can enable the ANN to predict the more accurate outputs that are identical or closer to the 

experimental values. The error measures and correlation of determination (R2) associated with 

different ANN configurations for estimations are presented in Table 1.  

 

Table 1. Errors and correlation of determination (R2) in prediction of net colour difference, shrinkage 

and texture using ANN with different numbers of neurons for osmotically dehydrated pumpkin slab. 

No. No. of neurons Color Changes Shrinkage Texture 

MSE R2 MSE R2 MSE R2 

1 3 0.1977 0.9199 6.7322 0.9502 0.0066 0.9581 

2 4 0.2210 0.9199 4.9030 0.9647 0.0014 0.9926 

3 5 0.2033 0.9189 3.8146 0.9730 0.0025 0.9845 

4 6 0.2916 0.8970 5.7380 0.9682 0.0142 0.9183 

5 7 0.3276 0.8661 7.1610 0.9454 0.0020 0.9888 

6 8 0.1406 0.9432 2.9180 0.9778 0.0041 0.9788 

7 9 0.2371 0.9235 6.9280 0.9474 0.0023 0.9859 

8 10 0.5140 0.8477 2.6089 0.9804 0.0074 0.9626 

9 11 0.1322 0.9457 2.9397 0.9780 0.0052 0.9679 

10 12 0.3448 0.8583 6.4621 0.9522 0.0120 0.9302 

 

After several repetitions, it is found that a network with 11 hidden layers (colour changes), 10 hidden 

layers (shrinkage) and 4 hidden layers (texture) produce the best performance. The correlation of 

determination (R2) for estimation of colour changes, shrinkage and texture (0.9457, 0.9804, and 

0.9926, respectively) were revealed good agreement between predicted and experimental values. 

 

The neural net weight matrix can be used to evaluate the relative importance of the input variables on 

the output variables. Garson et al. [41] proposed an equation based on the partitioning of connection 

weights: 

𝐼𝑗 =  
∑ ((|𝑊𝑗𝑚

𝑖ℎ |/ ∑ |𝑊𝑘𝑚
𝑖ℎ |

𝑁𝑖
𝑘=1 )×|𝑊𝑚𝑛

ℎ𝑜 |)
𝑚=𝑁ℎ
𝑚=1

∑ {∑ (|𝑊𝑘𝑚
𝑖ℎ |∕∑ |𝑊𝑘𝑚

𝑖ℎ |)×|𝑊𝑚𝑛
ℎ𝑜 |

𝑁𝑖
𝑘=1

𝑚=𝑁ℎ
𝑚=1 }

𝑘=𝑁𝑖
𝑘=1

                             (10) 
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where 𝐼𝑗 is the relative importance of the jth input variable on the output variable, Ni and Nh are the 

numbers of input and hidden neurons, respectively, W is the connection weight, the superscripts “k”, 

“m” and “n” refer to input, hidden and output neurons, respectively. The relative importance of the 

three input variables is shown in Table 2.  

 

Table 2. Relative importance of input variables 

Output Variable Colour Changes Shrinkage Texture 

Input Variable Importance (%) Importance (%) Importance (%) 

Concentration 41.47 36.06 48.88 

Temperature 33.46 28.04 47.08 

Time 25.07 35.90 4.04 

Total 100 100 100 

It can be seen that concentration has significantly affected the colour change of the samples compared 

to immersion temperature and time. For shrinkage, concentration and immersion time showed almost 

equal relative importance. As for the case of texture, concentration and temperature dominantly 

influence the property with immersion time showing only minimal effect. 

3.2. RSM modelling 

A quadratic polynomial equation was fitted with the experimental results obtained and the resulting 

RSM model equation is following:  

Colour = 9.48974 – 0.1747 x X1 + 0.060052 x X2 - 9.88215 x 10-3 x X3 + 2.01177 x 10-3 x X1X2 + 

7.95101 x 10-4 x X1X3 + 2.86333 x 10-4 x X2X3 – 1.44471 x 10-4 x X1
2 – 1.16503 x10-4 x X2

2 – 9.29399 

x 10-5 x X3
2                                                (11) 

 

Shrinkage = -46.9656 + 0.83909 x X1 + 1.90649 x X2 + 0.18509 x X3 + 5.5811 x 10-3 x X1X2 + 

1.50907 x 10-3 x X1X3 – 4.74356 x 10-4 x X2X3 – 6.16985 x 10-3 x X1
2 – 0.019982 X2

2 – 4.31191 x 10-4 

x X3
2                                                 (12) 

 

Texture = 2.46958 – 0.0178 x X1 – 0.026628 x X2 + 3.88043 x 10-3 x X3 + 4.76255 x 10-4 x X1X2 + 

1.26218 x 10-4 x X1X3 – 8.85556 x 10-5 x X2X3 –7.85213 x 10-5 x X1
2 – 1.74842 x 10-5 x X2

2 – 5.38906 

x 10-6 x X3
2                                                              (13) 

 

Table 3. ANOVA for the experimental results of the RSM modeling 

Source DF Colour Changes Shrinkage (%) Texture (kg) 

CE SS P value CE SS P value CE SS P value 

Model 9 9.89 48.56 0.0012 60.92 3391.77 <0.0001 1.85 4.13 <0.0001 

X1 1 0.48 4.19 0.0526 11.84 2522.59 <0.0001 0.27 1.29 <0.0001 

X2 1 1.16 24.03 0.0001 1.32 31.59 0.0634 -0.30 1.66 <0.0001 

X3 1 0.74 9.85 0.0053 6 647.05 <0.0001 0.21 0.80 <0.0001 

X1X2 1 0.45 2.46 0.1288 1.26 18.92 0.1426 0.11 0.14 0.0013 

X1X3 1 0.72 6.14 0.0218 1.36 22.14 0.1147 0.11 0.15 0.0008 

X2X3 1 0.26 0.8 0.3761 -0.43 2.19 0.6080 -0.080 0.076 0.0111 

X1
2 1 -0.033 6.34E-03 0.9363 -1.39 11.56 0.2459 -0.018 1.873E-03 0.6607 

X2
2 1 -0.26 0.41 0.5220 -4.5 121.28 0.0012 -3.934E-03 9.286E-05 0.9219 

X3
2 1 -0.33 0.67 0.4156 -1.55 14.46 0.1967 -0.019 2.258E-03 0.6300 

Std. Dev  0.98   2.83   0.097   

Mean  9.47   55.96   1.83   

CV%  10.37   5.06   5.30   

PRESS  41.34   392.95   0.40   

Adeq.Prec  10.252   23.612   26.550   

R2  0.7476   0.9614   0.9628   

Adj R2  0.6140   0.9410   0.9431   

Pred R2  0.3636   0.8886   0.9059   
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DF – degree of freedom; CE – coefficient; SS – sum of square 

   
Figure 2. Experimental vs. predicted values for (a) colour change, (b) shrinkage percentage, (c) 

texture, by optimum RSM and ANN configuration respectively. 

 

From equation 11, it can be seen that sucrose concentration and immersion time have negative effect 

on the colour changes while solution temperature has positive effect on colour changes of osmotically 

pumpkin slabs. From equation 12, both the three process variables have positive effect on the 

shrinkage percentage. However, from equation 13, sucrose concentration and solution temperature 

show negative effect, while immersion time shows positive effect on texture.  

 

Table 3 shows the results of the second order polynomial model in the form of Analysis of 

Variance (ANOVA) and the equation indicated adequately relationship between the independent 

variables and the output variables. The ANOVA result for the color changes, shrinkage and texture 

indicates F-value of 5.59, 47.07 and 48.86 which proves that the model is significant. Coefficient of 

determination (R2) was calculated to check the significance of the model and the values of R2 were 

obtained to be 0.7476, 0.9614 and 0.9628 for color changes, shrinkage and texture respectively which 

imply the model is highly significant. In addition, p-value was obtained to be 0.0012 for colour 

changes, <0.0001 for shrinkage and texture, which indicates the proper fitting for the model. The 

coefficient of variation (CV%) measures the dispersion of the experiments values from the predictions 

values of the quadratic polynomial models [42].The values of CV are 10.37, 5.06 and 5.3 and these 

indicate the low deviation between the experimental and predicted values. Adequate precision (AP) 

refers to measures of the experimental signal to-noise ratio and AP exceeds 4 is desirable [43]. In this 

study, AP is found to be greater than 10, which implies good prediction of the model. Linear 

regression analysis was performed between the output variables (colour changes, shrinkage percentage 

and texture) values estimated by both RSM and ANN with their experimental values as shown in 

Figure 2. 

3.3. Comparison of ANN and RSM models 

The comparative values of RMSE, MPE (%) and R2 of ANN and RSM has been calculated and listed 

in Table 4. The root mean square error (RMSE) for colour change by RSM and ANN is 0.779 and 

0.364, the Model Predictive Error (MPE) is 6.319% and 2.874%, and the coefficient of determination 

(R2) is 0.745 and 0.946. The RMSE for shrinkage by RSM and ANN is 2.245 and 1.615, the MPE is 

3.360% and 2.092%, and the coefficient of determination (R2) is 0.961 and 0.980. The RMSE for 

texture by RSM and ANN is 0.078 and 0.038, the Model Predictive Error (MPE) is 3.796% and 

1.569%, the coefficient of determination (R2) is 0.963 and 0.992. The results when compared with 

RSM showed that ANN has much better performance in correlating non-linear relationships. The same 

observation was also reported by Youssefi et al. [28]. 
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Table 4. Comparison between RSM and ANN 

Statistical 

parameters 

Color Changes Shrinkage Texture 

RSM ANN RSM ANN RSM ANN 

RMSE 0.779 0.364 2.245 1.615 0.078 0.038 

MPE (%) 6.319 2.874 3.360 2.092 3.796 1.569 

R2 0.745 0.946 0.961 0.980 0.963 0.992 

 

The results of error prediction by RSM are larger than ANN, indicating that the ANN model has 

higher modelling and predictive ability than RSM. The higher predictive accuracy of ANN can be 

attributed to its universal ability to model non-linear system, while RSM only restricted to quadratic 

polynomial. RSM also requires a standard experimental design in order to construct the model. 

However, ANN model may require a greater number of experimental data and higher computation 

time than RSM [29,44]. 

4.Conclusion 

This study compares the performance of RSM and ANN for their prediction capabilities using the 

experimental data of osmotically dehydrated pumpkin. The ANN models was found to have better 

predictive capabilities in color changes, shrinkage and texture after comparing RMSE, MPE and R2 of 

both models. The structured nature of RSM provides the predicted quadratic equation to exhibit the 

factors contributions from the coefficient regression of the models. This ability is robust in identifying 

the significant and insignificant terms in the model and hence can reduce the complexity of the models. 

However, the ANN presents a better alternative in modelling and prediction.  

Acknowledgement 

The authors would like to acknowledge the financial support from University Malaysia Sabah and 

Ministry of Higher Education Malaysia (grant: RACE009-TK-2013).  

References 

[1]  Kowalska H, Lenart A and Leszczyk D 2008 The effect of blanching and freezing on osmotic           

dehydration of pumpkin J. Food Eng. 86 30–8 

[2]  Ciurzyńska A, Lenart A and Greda K J 2014 Effect of pre-treatment conditions on content and        

activity of water and colour of freeze-dried pumpkin LWT - Food Sci. Technol. 59 1075–81 

[3]  Yang X, Zhao Y and Lv Y 2007 Chemical composition and antioxidant activity of an acidic 

polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret. J. Agric. Food Chem. 

55 4684–90 

[4]  Doymaz İ 2007 The kinetics of forced convective air-drying of pumpkin slices J. Food Eng. 79 

243–8 

[5]   Assis F R, Morais R M S C and Morais A M M B 2015 Mass Transfer in Osmotic Dehydration of 

Food Products: Comparison Between Mathematical Models Food Eng. Rev. 8 116–33 
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