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Abstract. In recent years, one of the most prominently investigated materials is hydroxyapatite 

(HA). It is because of its excellent properties for medical applications, essentially related to 

orthopedic. Also, the introduction of other materials to HA becomes another research focus of 

many leading scientists. In this present study, silicon with various concentrations was 

introduced, by means of solid state reaction route, to HA forming Si-HA. The crystal structure 

properties of the as-prepared samples were evaluated by X-ray diffractometer (XRD). Fourier 

Transform Infra Red (FTIR) spectroscopy data collection and analysis were done to investigate 

the functional groups within the samples. The microstructural characteristics as well as 

elemental mapping of the samples were captured by scanning electron microscopy and energy 

dispersive x-ray spectroscopy (SEM-EDX). Vickers hardness test was also conducted to 

investigate the hardness properties of the samples. Furthermore, in vitro characterization-based 

bio resorbability of the samples in a simulated body fluid were also described. This study 

revealed that Indonesian limestone can be utilized as the raw material for synthesizing HA. The 

silicon has been successfully incorporated into phosphate site of the HA crystal. Conclusively, 

the Si-HA reported in this study shows good bioresorbability characteristic. 
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1. Introduction 
Study of biomedical materials for bone implantation has been extensively made for the last decades. 

One of the most securing materials for bone repair and bone regeneration is the well-known 

hydroxyapatite (Ca10(PO4)6(OH)2, HA) [1,1] that is attributable to its resemblance to the human bone 

[2,3]. Many approaches have been conducted to produce HA, for instance by means of hydrothermal 

[4], sol-gel precipitation [5], ultrasound irradiation [6], and microwave-assisted approaches [7]. In 

addition, solid-state reaction technique is, in spite of everything, recognized as one of the most 

effective methods for HA production [8–11]. However, a study exclusively investigating the use of 

natural calcium-based materials to synthesize HA is rarely conducted. This breakthrough is important 

not only to reduce the cost of HA production but also to provide an added-value of the abundant 

natural resources, i.e. limestone.  

Limestone is one of the most abundantly naturally-occurring minerals [12] consisting mainly of 

calcium carbonate (CaCO3) in three different crystalline phases, i.e. calcite, vaterite, and aragonite 

[12,13]. It is captivating to know the way the nature adeptly models and accurately organizes the 
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building block, constituent composition, polymorphism, and other remarkable characteristics of 

CaCO3. Previous study showed that high-purity CaCO3 could be found in many sites in Indonesia [14]. 

However, it becomes less valuable due to its unnecessary purposes of exploitation. This work, then, 

introduces the possibility of realizing a beneficial use of limestone as the calcium stand-in to fabricate 

calcium phosphate-based HA. 

Eventhough HA offers outstanding osteoconductivity and biocompatibility [15], pure-HA, at the 

same time, performs low reactivity with the original (human) bone [16] leading to insufficient ability 

to create interfaces with the original bone and to stimulate the new bone formation [17]. So, having 

succeeded in producing pure-HA may not solve the challenge of creating an excellent biomedical 

material for bone grafting yet.  

The best way to solve this problem is to modify HA crystal structure with insertion of small 

amount of silicon. Silicon is frequently used as dopant for bioceramics since it significantly enhances 

the ultimate properties of the biomaterials such as surface chemical structure, mechanical strength, 

bioactivity, and biocompatibility [17]. Particularly, silicon plays an important role at the early stages 

in stimulating normal growth of bone and soft tissue development [18]. Therefore, in this work, we 

report the use of limestone in HA production by means of solid state reaction and study the effect 

silicon on the characteristics of silicon-doped hydroxyapatite (Si-HA). 

 

2. Experimental Method 

A limestone from Malang, Indonesia, was selected prior to produce HA. The limestone was grounded 

and sieved. Only particles passing a mesh screen with 200 mesh were used in this study. The powder 

was calcined at1000 C for 5 h to obtain CaO powder. The CaO was then dissolved in distilled water. 

H3PO4 (Sigma-Aldrich) was added to the CaO solution and stirred at 30 C for 30 min. Filtration was 

made after stirring the solution. The precipitate was heated at 700 C for 10 h to form calcium 

phosphate, Ca2P2O7. The primary materials to synthesize Si-HA were prepared after the stoichiometric 

calculation, i.e. CaCO3 from limestone, Ca2P2O7, and SiO2 (Sigma-Aldrich). These materials were 

mixed and grounded for 30 h followed by pressing to produce cylindrical-shaped samples. The as-

prepared samples were sintered at 1100 C for 20 h. The characterizations were performed by means 

of XRD for crystal structure and phase content study. The microstructural investigation and elemental 

mapping of the samples were conducted by using Scanning Electron Microscopy (SEM) and energy 

dispersive x-ray (SEM-EDX). Furthermore,  Vickers hardness tes was used to study the mechanical 

strength od the samples. The functional groups of the samples were determination by using Fourier-

Transform Infrared (FTIR). 

 

3. Results and Discussion 
The previous study [19] revealed that the content of calcium from the limestone was above 97%. The 

diffraction profile of the as-prepared calcium phosphate also depicted that the crystal structure was in 

good agreement with the crystallographic open database code 96-200-1133. It implies that the 

limestone can be well used as the raw material to produce calcium phosphate and for further used for 

the production of HA. 
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Figure 1. XRD profiles of pure-HA and Si-HA with various Si contents 

 

The XRD data for Si-HA with various Si contents can be viewed in Figure 1. There is no peak 

found in which corresponding to silicon. The arrangement of 2-theta and intensities of the XRD 

profiles, particularly for pure-HA refers to the crystal structure of hydroxyapatite with the PDF 

reference code of 01-084-1998 without the presence of any minor phases. Introducing of silicon to HA 

does not change the XRD patterns, meaning that the crystal structures remain unchanged. Even if there 

is a lattice distortion, it will be very insignificant  [15]. Only  Si-HA with x = 0.6 containing additional 

peaks referring to aragonite CaCO3 with the PDF code of 00-024-0025. The hydroxyapatite detected in 

the XRD patterns has hexagonal crystalline system with space group of P63/m. The absence of silicon-

containing XRD peaks implies that the silicon might successfully incorporate to HA sites.  

Further XRD data analysis was conducted to explore degree of crystallinity as well as crystalline 

size. The crystalline size was evaluated by means of Scherrer equation [20]. Since, in principle, the 

equation which based on the XRD peak broadening can be applied to predict the size of crystal [21]. 

The crystalline size of Si-HA with silicon contents of 0, 0.6, 0.7, and 0.8 are 26.85 nm, 34.85 nm, 

40.06 nm, and 40.84 nm, respectively. These results are in a good agreement with another report [15]. 

In other words, there is an increasing size of crystal for silicon-containing HA with respect to the 

concentration of silicon. On the other side, crystallinity of the samples also varies with different 

silicon content. The crystallinities of Si-HA with silicon contents of 0, 0.6, 0.7, and 0.8 are 35.75%, 

29.40%, 21.66%, and 20.99%, respectively. The reduced of the degree of crystallinity is strongly 

believed that it is due to the incorporation of SiO4
4-

 ions  into HA sites by exchanging PO4
3-

 ions [22]. 

One of the most important characteristics of HA is the ratio of Ca/P or Ca/(P + Si) for Si-HA. 

Therefore, here we also report the ratio by means of SEM-EDAS measurement. Figure 2 shows the 

SEM-EDAS elemental analysis of Si-HA with x = 0.6 (data for pure-HA and other Si-HAs are not 

shown). From Figure 2, we can calculate the ratio of Ca/(P + Si) is 1.80. The ratio of Ca/P for pure-

HA is 1.67 which is very close to the ratio reported by other researchers [20–24]. Figure 3 represents 

the microstructure of pure-HA and Si-HA. It informs us that there is a significant decrease of porosity 

as the increase of silicon contents. Quantitatively, the porosity of sample reduces from 10.27% (pure-

HA) to 8.97% (x = 0.6), 7.69% (x = 0.7), and 7.60% (x = 0.8). The decrease of porosity reveals that the 
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incorporation of silicon into HA takes place the pore of the system. This case may assist dissolution of 

surface ions that stimulates the formations of apatite layer [17]. 
 

 

 

Figure 2. SEM-EDAS elemental analysis of Si-HA (x = 0.6) 

 

 
Figure 3. SEM photographs of pure-HA and Si-HA 
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Figure 4. FTIR Spectra of Si-HA with different silicon 

concentrations 

 

FTIR was applied  to investigate the influence of the Si incorporation on the different functional 

groups of Si-HA. From Figure 4, Asymmetric bending vibration of PO4
3- 

groups is precieved at 570 

cm
-1

 [27]. Another phosphate bonding is also noted at 601 cm
-1

 [28]. Hydroxyl group bending is found 

in 630 cm
-1

 [5]. Si-O and P-O stretching, which decrease and become less resolved as the higher 

amount of silicate content [1], are shown by the FTIR bands in  950 cm
-1

 and [1,15] and 1089 cm
-1 

[15]. Hydroxyapatite broad absorption corresponding to PO4
3-

 stretching vibrational mode is 

discovered at 900-1100 cm
-1

 [29]. In addition, silicate and phosphate tetrahedral molecular units share 

several similarities of asymmetrical stretching vibration modes in the range of  900-1100 cm
-1

 [1]. 

Increase in broadening peak at 1060 cm
-1

 is strongly believed as the incorporation of silicon and the 

decrease of crystallinity [22]. Asymmetric stretching of CO3
2- 

groups is detected at 1400 cm
-1 

[27]. 

Hydroxyl group stretching in hexagonal channels and surface hydroxyl group are observed at 3572 

cm
-1

 [5] and 3643 cm
-1

 [22]. 

The hardness characteristic of the Si-HA was characterized by means of Vickers hardness test. It is 

revealed that the addition of silicon into hydroxyapatite elevates the hardness. Figure 5 represents the 

graph that contains information on the interconnection between hardness and porosity of Si-HA.  
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Figure 5. Hardness and porosity characteristics of Si-HA with 

different silicon concentrations 

 

The high temperature sintering applied during the synthesis may give chance for the grains to grow 

due to the densification process [30]. Introducing silicon into hydroxyapatite yields the reduction of 

porosity, meaning that the Si-HA becomes denser as the quantity of silicon intensifies. Which in turns, 

it increases the hardness value of the prepared Si-HA. 

Furthermore, the bioresorbability of the sample with the lowest silicon concentration in Si-HA 

prepared in the series of this experiment was evaluated by means of immersing the sample in 

simulated body fluid (SBF) solution for hours. Bioresorbance is one of biodegradation phenomena 

indicated by  the decrease of mass during the immersion of sample in a fluid [31]. It can be evaluated 

by calculating the mass reduction of Si-HA in SBF solution. The average mass reduction of Si-HA per 

day was 0.003 g. It implies that the Si-HA is applicable for biomedical applications [31]. 

 

4. Conclusion 

The present work describes the characteristics of Si-HA prepared by solid-state reaction approach. It is 

discovered that the limestone from Indonesian mineral resource can be effectively used as the raw-

material for hydroxyapatite production. The XRD data revealed the absence of silicon-oxide-based 

diffraction peaks and FTIR spectra convincing the presence of Si-O functional groups. It implies that 

the silicon has been successfully inserted into phosphate site within the crystal of hydroxyapatite. The 

Vickers hardness of the samples increased as the decrease of porosity. Finally, the produced Si-HA 

shows the feasibility for biomedical applications particularly due to its bioresorbability characteristic. 
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