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Abstract. The paper presents a comparative analysis between experimental results and 

modelling in order to interpret the value of the contact pressure on the asymmetric longitudinal 

rolling. It is also intended action and the different behaviour of upper cylinder compared to the 

lower cylinder action in situations when both are driven, or only one operates. In the modelling 

will be presented on the basis of boundary conditions imposed rolling pressure variation in the 

degree of reduction and also re size arc length of contact. Determining a curve is also important 

to determine the locus of points which characterize symmetry conditions partial rolling process 

between unequal diameters cylinders. 

1. Establishing engineering mathematical models for the rolling process  

This paper is part of the modern trends of gradual replacement of the physical experiments with 

numerical ones in the design and optimisation of the technological processes of plastic deformation by 

rolling. By its nature, this paper requires a multidisciplinary approach, starting with the deep 

understanding of the theory of complex phenomena of metallic materials plastic deformation by 

rolling, and continuing with the modern techniques of processing and interpretation of the 

experimentally obtained data. 

 

1.1. The model used for the contact arc length [1] 

The length of the contact arc between the metallic material and the rolls is one of the decisive 

parameters influencing the strength, temperature and kinematic conditions of the rolling process. To 

determine the length of the contact arc for symmetrical and asymmetrical cold rolling, in addition to 

the roll reduction and radius, we must also know the elastic deformations of the rolls and the strip 

undergoing the rolling process, values that depend on the strength of the rolling process. 

This problem can be solved by using the rolling theory equations, as well as the elasticity theory 

equations, based on the well-known models and methods for calculating the length of the contact arc 

for cold rolling.  

Using the Hertz’s concept (relationship 1), a number of models have been obtained, as following: 

   √
       
     

   (1) 

a) The Hitchcock's model, which takes into account the elastic compression of the rolls: 

       √        
  (2) 

               (3) 
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 (4) 

R  – the radius of the working rolls; 

Δh  – the absolute reduction; 

     – the mean normal contact stress; 

    – the Poisson's ratio; 

    – the elastic modulus of the material which the rolls are made of  

Relationship 2 does not take into account the elastic deformations of the strip undergoing the rolling 

process, and the normal stress diagram is adopted in the shape of semi ellipse. 

b) The Roberts model takes into account the contact between the rolls and an ideal rigid plan: 

   √         √
      
  

 (5) 

   – The normal force acting per unit length of the strip; 

c) Ţelicov and Grişcov proposed the following relationship to calculate the increase of the contact arc 

length by taking into account the asymmetry of the normal stresses diagram: 

                 (6) 

This relationship (6) helps reducing the errors between the calculated values and the experimental 

ones. 

d) The Ţelicov’s model introduces also the influence of elastic deformations of the strip: 

      √       
  (7) 

            (       ) (8) 

   
    

 

    
 (9) 

The mean normal contact stress, the contact arc length and its increase along the plane passing 

through the centres of the rolls are calculated by taking into account the elastic deformations of the 

rolls and the strip;  

e)   Dinnik shows in his model that the determination of the contact arc length increase xl without 

taking into account the length of the strip and the diagram symmetry for normal stresses is irrational, 

proposing xl to be determined using the relationship: 

              (  √      
  

   
) (10) 

a – Coefficient considering the asymmetry of the normal stresses diagrams: 

hl – Thickness of the strip after rolling 

For determining the value of xlc, Dinnik recommends the Relationship 3. 

f) The relationship proposed by Cepurchin determines the contact arc length taking into account only 

the elastic compression of the rolls, as follows: 

     √               (11) 

c – Shape coefficient of the normal stresses diagram 

g) Based on the previous model, Poluhin obtained the dependence for determining the length of the 

contact arc by taking into account the elastic deformations of the rollers and strip. Therefore: 

    √           (     )    (12) 

Where: 

      √
    

  (     )
    (13) 
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1.2. The model used for the mean normal contact stresses [1] 

Since the elastic deformations of the strips are neglected in all the proposed models, we are going to 

analyse the plastic contact portion between the strip and the rolls to determine the mean contact 

pressure.  

Thus, there are a number of models proposed in the literature, which are distinguished by 

simplicity and compactness, and are obtained considering a constant value of the resistance to 

deformation for the mean values of the respective parameters. The models proposed by these authors, 

without taking into account the influence of elastic deformations of the rolls, are shown in the 

following table: 

 

Table 1. The variation domains of variables 
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where: 

  
     

  
 (19) 

  √     (20) 

   √  
      

     
 (21) 

         (22) 

  
  

  
 

(23) 

For the convenience of further analysis of the model, we replace the "pm" value with the 

dimensionless parameter “n”, which is the stress state coefficient: 

   
  
    

 (24) 

And dependencies: for determining:      
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With consideration of relations, models of the Table 1, take the form 

 

Table 2. The variation domains of variables 
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Dependencies can be simplified to some extent, if adopted: 

   √
 

  
 (37) 

    √
 

 
 (38) 

After entering in we obtain: 

Table 3. The variation domains of variables 
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The relationships confirm the fact that the stress state coefficient “n”, found in all the analysed 

models, finally represents a function of three dimensionless parameters: 

1 – the coefficient of friction; 

2 – the ratio between the radius of the working rolls and the thickness of the bar at the 

entrance into the deformation zone; 

3 – the relative reduction, which is also the criterion of similarity; 

2. The experimental plant and testing method 

The research for this theme purpose have been made on a 170 mm reversing two-high rolling mill, 

created and installed in the no conventional technologies and plastic deformation laboratory of the 

Engineering Faculty from Hunedoara [1-3].  

Figure 1, [1] shows a general view of the installation, which has been built by the author of this 

paper and which, compared to all the other mills, allows a simultaneous registering of the symmetric 

and asymmetric rolling process parameters, which are the rolling force (Fd and Fa), the side efforts (Xd 

and Xa), the pressure on the surface of contact with the superior roll (pms) and the with inferior one 

(pmi), the real lengths of the springs of contact with the superior roll (ls) and with the inferior one (li). 

 
Figure 1. The installation for the research on the force parameters of the symmetric 

and asymmetric longitudinal rolling process 

1 – 140 [mm]- “A” divided head superior roll; 2 – 170 [mm]-“B” divided head inferior roll; 

 3 – R = 70 [mm] -segment for the superior roll; 4 – R =100 [mm] – segment for the inferior roll;  

5 – device for registering the real length of the contact springs; 6 - bearing 

7 – superior roll bearing; 8– rolling force (F) detector; 9 – side force (X) detector 

 

Since the intended purpose was to study the qualitative aspect of phenomena related to the 

asymmetric longitudinal rolling, for eliminating the inevitable influence of the iron oxides (scale) on 

the process, the tests were carried out on samples of aluminum and copper, with the following 

dimensions [4]:  
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In this paper, by analyses and calculations, we are going to use the experimentally obtained values 

for pressure, and the actual contact lengths of the arcs with the upper and lower roll, for equal diameter 

and different diameter. 

3. Discussions and technological interpretations 

Figure 2 shows the dependence of the real length of the contact arc – with the upper roll (smaller) and 

the lower roll (bigger) – versus the reduction, when rolling the samples whose thicknesses are h0=12; 

6; 2 and 1 mm [4]. 

As can be seen in the figure, the curves are increasing differently, their points of intersection being 

found at different degrees of reduction, depending on the thickness of the rolled samples. 

Up to the points of intersection (=30-35% for h0 =12 and 6 mm), the length of the arcs afferent to 

the smaller-diameter roll (upper) is greater, and by further increasing the reduction, the actual lengths 

of the contact arcs afferent to the smaller-diameter roll become smaller. 

 
Figure 2. The dependence of the real length of the contact arc – with the upper roll (smaller) and the 

lower roll (bigger) – versus the reduction, when rolling the samples whose thicknesses are  

h0 = 12; 6; 2 and 1 mm 

 

By overlapping the areas where the mean pressure is exerted by the upper roll (smaller) and the 

lower roll (bigger) for rolling the samples whose dimensions are h0 =12 mm (Figure 3 and 4), we 
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discover a similar picture, with the only difference that the chart dependencies for the upper and lower 

rolls are changing their places, i.e. to the highest values of the length arcs correspond to the lowest 

pressure values and vice versa. 

 
Figure 3. Variation of the rolling pressure and the contact arc length, h0=12 mm samples 

between different diameter cylinders 
  

  
 
   

   
   ,  applying various reductions, lower cylinder 

 

 
Figure 4. Variation of the rolling pressure and the contact arc length, h0=12 mm samples 

between different diameter cylinders 
  

  
 
   

   
   ,  applying various reductions, upper cylinder 

 

For each thickness, the intersection points of the curves representing the mean pressure and the 

actual length of the contact arc are placed at the same value of the reduction, confirming the 

correctness of the experimentally obtained data [5]. 

For the samples whose dimensions are h0 = 2 mm (Figure 5 and 6), the intersection points of the 

curves lrs=f(, pms) and lri=f(, pmi) are moving considerably and correspond to the reduction ε=15-

25%, and the length of the contact arcs afferent to the larger-diameter roll (lower) is greater, li ls.  It is 

obvious that, for reductions smaller than the mentioned range, lri  lrs. 
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Figure 5. Variation of the rolling pressure and the contact arc length, h0=2 mm samples 

between different diameter cylinders 
  

  
 
   

   
   ,  applying various reductions, lower cylinder 

 
Figure 6. Variation of the rolling pressure and the contact arc length, h0=2 mm samples 

between different diameter cylinders 
  

  
 
   

   
   ,  applying various reductions, upper cylinder 

 

The distribution of the pressure exerted by each roll, for the samples whose dimension is h0 =2 mm, 

is shown in Figures 5 and 6. In this case, there is a total concordance with the results presented so far. 

Therefore, within the reduction range ε =10-25% and pms = pmi. 

With increasing degree of reduction, the mean pressure on the smaller-diameter roll (pms) has a 

growing value compared to the mean pressure exerted by the larger-diameter roll (pmi). 

At reductions smaller than 10-25%, similar to the lengths of the contact arcs, the inequality pmi pms 

is the one which probably applies. The results obtained in the experimental research carried out when 

using rolls with unequal diameters are fully consistent with the laws of mechanics.  

Indeed, for any difference between the diameters of the working rolls and any degree of reduction 

(ε) applied, Fs = Fi, or:    
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Joining the intersection points ls and li shown in Figure 2, for various thicknesses of the rolled 

samples, as well as the intersection points of the curves describing the mean pressure on the smaller 

roll (pms) and the bigger one (pmi) in Figures 3, 4, 5 and 6, we obtain a parabola passing through the 

origin of the coordinate axes (Figure 7), which in general can be expressed by the equation: 

      (44) 

where: y – represents the mean pressure (or the lengths of the  contact arcs, respectively); 

            a  – coefficient taking into account the rolling conditions; 

            X – critical degree of deformation; 

            n  – index depending on the degree of asymmetry of the process. 

 
Figure 7. Variation of the rolling pressure and the contact arc length, between different diameter 

cylinders 
  

  
 
   

   
   ,  applying various reductions 

 

The obtained curve is in itself the geometrical locus of the points which characterise the partial 

symmetry conditions of the rolling process between unequal-diameter rolls when the following 

equalities occur, determining this symmetry:  

        
      

(45) 

In this case, regardless of the ratio between the working diameters of the rolls, the metallic material 

comes out in a straight line. 

The field located above this curve corresponds to the situation when, on the larger-diameter roll 

(lower), the pressure is higher and the contact arc length is lower, i.e.: 

        
      

(46) 

In this case, all the rolled samples are bending upwards when coming out from the rolls (on the 

smaller-diameter roll). 
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The respective field is located under this curve, where the pressure exerted by the smaller-diameter 

roll (upper) is higher, and the contact arc is shorter:   

        
      

(47) 

In this case, the rolled samples are bending downwards when coming out from the rolls (on the 

larger-diameter roll). Therefore, in the field located above the curve plotted in Figures 3, 4, 5 and 6, 

the pressures exerted by the larger-diameter roll are high, and in the field located under the curve, the 

pressures exerted by the smaller-diameter roll are much higher. 

Obviously, when pmi pms, the bigger is the difference between the working diameters of rolls and 

the bigger is the initial thickness of the sample, the larger is the field. Related thereto, we should 

mention that the mean pressure is decreasing with increasing the deformation unevenness. 

4. Concluding remarks 

The research results confirmed that the current views on the deformation theory, according to which, 

at asymmetrical rolling, the pressures exerted by the smaller-diameter roll are always higher, are 

flawed. To characterise the rolling process based on the results obtained from this research, we 

consider useful to introduce a coefficient able to characterise the degree of asymmetry of the process: 

   
   
   

 
  
  

 (48) 

Interpreting the dependencies presented in Figure 7, it results: 

If Ka=1, this situation corresponds to the case when y=aXn, and characterises the adequate 

conditions required by a symmetrical process to occur between the unequal-diameter rolls. 

The more differs the Ka coefficient from the Ka=1 value, the greater is the difference between the 

contact arc lengths and the mean pressures exerted by the unequal-diameter cylinders, and the more is 

increasing the degree of unevenness of the deformation. 

At the asymmetrical process, when the rolls have unequal diameters, the pm value is much lower 

than in case of a symmetrical process under identical conditions of reduction. This phenomenon is 

fuelled by the denatured shape of the deformation zone, which creates favourable conditions for 

developing longitudinal tensile stresses, whose action over the bar during the rolling process can 

match the previous and subsequent stress applied, which considerably reduces the mean pressure 

exerted on the contact surfaces of the rolls. 
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