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Abstract. There are a lot of nonlinear loads in real low voltage microgrid system. It will cause 

serious output voltage and grid current harmonic distortions problems in island and grid-

connected modes, respectively. To solve this problem, this paper proposes a droop control 

scheme with quasi-proportion and resonant (quasi-PR) controller based on  stationary 

reference frame to make microgrid smoothly switch between grid-connected and island modes 

without changing control method. Moreover, in island mode, not only stable output voltage and 

frequency, but also reduced output voltage harmonics with added nonlinear loads can be 

achieved; In grid-connected mode, not only constant power, but also reduced grid current 

harmonics can be achieved. Simulation results verify the effectiveness of the proposed control 

scheme. 

1. Introduction 

For microgrid, there are four modes, i.e. island, grid-connected and switchinges between them [1-2]. 

In real low voltage microgrid system, there are a lot of nonlinear loads [3]. Thus, microgrid should 

have the ability of stable operation with nonlinear loads in all these four modes. It is an important 

problem for its control scheme development [4]. 

Reference [5] proposed a controller, suitable for grid-connected mode with nonlinear loads, but not 

for island mode. Reference [6] proposed a control method together with PI and quasi-PR controllers 

for inverter with nonlinear loads, which is only suitable for island mode. References [7-8] proposed a 

droop control scheme based on virtual impedance for parallel inverters with nonlinear loads, which is 

only suitable for single-phase inverter in island mode. Reference [9] proposed a droop control for 

multiple harmonics with nonlinear loads, which can reduces grid current harmonics in grid-connected 

mode, but is not good for the reducing of output voltage harmonic in island mode. Reference [10] 

proposed a droop control method with quasi-PR controller based on abc coordinate system for the 

parallel inverters with nonlinear loads, but only suitable in island mode. Reference [11] proposed a 

droop control method with PR controller based on  stationary coordinate system for high-voltage 

system with nonlinear loads in both island and grid-connected modes, in which the output voltage 

harmonic distortion is small, but system performance in grid-connected mode is not analyzed. 

Based on the references mentioned above, an integrated and improved droop control strategy with 

quasi-PR controller based on  stationary coordinate system in low-voltage system with nonlinear 

loads is proposed in this paper. Moreover, virtual impedance for the voltage and current double 

closed-loop is added to achieve the resistive output impedance of the inverters. Finally, the improved 
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performance of microgrid with nonlinear loads in four operation modes will be verified through 

simulation. 

2. Droop control with quasi-PR controller of Inverters 

2.1. Quasi-PR controller 

The proposed control scheme for three-phase inverter in island and grid-connected modes is based on 

droop control framework, and includes the double control, the virtual impedance implementation, and 

the quasi-PR controller based on  stationary reference frame. Three-phase reference voltage is given 

by the droop control equation. 
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Figure 1. Block diagram of droop control of three inverter with island and grid-connected mode 

A three-phase inverter can be simplified into two independent single-phase systems [8]. The 

simplified diagram of double closed-loop control of inverter is shown in figure 2, which includes a 

voltage and a current control loop.  
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Figure 2. Double closed-loop control of inverter 
In figure 2, the outer voltage loop controller Gv(s) adopts quasi-PR controller to achieve static error 

tracking of output fundamental voltage and suppression of 5
th
, 7

th
, 11

th
 and 13

th 
harmonic voltages [10]. 

The inner current loop controller Gi(s) adopts proportional (P) control of the inductor currents. Thus, 

the inverter output voltage can be obtained as follows: 
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where Zo(s) is the equivalent output impedance; G(s) is the output voltage transfer function; uref is 

the inverter reference voltage; io is the inverter output current; L and C are the inverter filter inductance 

and capacitance; r is the internal resistance of the filter inductor. Gv(s), Gi(s) can be described as 

follows [11]: 

 
22

1,5,7,11,13

( )
2

ri
v pv

ri ii

k s
G s k

s s 

 
 

                (2) 

 ( )i piG s k  (3) 

where kpv is the proportional coefficient of quasi-PR controller; kri and ri are the resonance and 
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bandwidth coefficients for the i
th
-order (i=1,5,7,11,13) harmonic frequency, respectively; kpi is the 

proportional coefficient of current controller; Fundamental angular frequency 1=2π*50rad/s. 

In order to analyze the properties of Gv(s), Zo(s) and G(s), corresponding values are determined as 

follows: L=5mH, r=0.02Ω, C=400µF, kr1=200, kr5=150, kr7=100, kr11=50, kr13=20, r1,5,7,11,13=6.5, 

kpi=50.  

1) Obviously, Gv(s) has large gain in the fundamental and four harmonic frequencies, and zero-

error tracking can be achieved in these frequencies [11]. 

2) With kpv=0.5, 2.5, 10, and other parameters unchanged, the frequency characteristics of open-

loop voltage transfer function, G(s) and Zo(s) are shown in figure 3. Figure 3(a) shows that with the 

increasing of kpv, the bigger the open-loop cut-off frequency will be, the better the system's rapidity 

will be, but the smaller the phase margin will be, then the system stability is reduced. Figure 3(b) 

shows that the bigger kpv is, the better voltage tracking will be. Figure 3(c) shows that the bigger kpv is, 

the smaller magnitude gain of Zo(s) and gain for each harmonic will be, which will suppress the 

influence of the harmonic currents for output voltages. Thus, kpv  needs to be compromised. 
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Figure 3. Bode diagrams with kpv=0.5, 2.5, 10 

2.2. Droop control 

The reference voltage of double closed-loop is generated by droop control and virtual impedance. In 

low-voltage system with resistance line, droop control equations can be defined into [7,12]: 
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 (4) 

where Pn and Qn are the reference active and reactive power with inverter operating in nominal 

voltage and grid-connected mode; Po and Qo are the actual output active and reactive power of inverter; 

Un and n are the nominal amplitude and frequency of grid voltage; Ur and r are the reference 

amplitude and frequency of inverter output voltage. n and m are the droop coefficients of active 

power-amplitude and reactive power-angular frequency. 

In order to reduce the deviations of the inverter output voltage and frequency with traditional droop 

control in island mode, voltage and frequency error feedbacks are added into droop control equations 

[1,11], which can be expressed as follows: 
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where sys is pre-synchronize phase signal and will be added to droop control equations in grid-

connected mode. In island mode, sys=0. Po and Qo can be calculated as follows [11]: 

 o o o op u i u i        (6) 

 o o o oq u i u i        (7) 

where p and q are instantaneous active and reactive powers. In order to eliminate the ripple of p 

and q, low-pass filter is used to obtain active power Po and reactive power Qo. 

Moreover, according to equation (4), the inverter output impedance must be resistive [7]. Thus, 

virtual impedance is added into double-closed loop to reduce the impact of controller parameters on 

the inverter output impedance. Virtual impedance can be expressed as follows: 

 ( )v v vZ s R sL   (8) 

where Rv is the resistance component and Lv is the inductance component. A low-pass filter is added 

into the virtual impedance to suppress the harmonic interference [11]. 

3. Simulation Results 

Matlab/Simulink is used to build a three-phase inverter model, as shown in figure 1. The system 

parameters are: 1) main circuit: Udc=800V, L=5mH, r=0.02Ω, C=400uF, fs=5kHz, Ug=380V/50Hz; 2) 

linear load: PL=16kW, QL=0kvar; 3) rectifier load: Lnon=1mH, Cnon=1000uF, R=20; 4) droop control: 

n=0.35, m=0.02, Ur=311V, r=100*, Pn=14kW, Qn=0var, kpn=300, kin=0.05, kpm=300, kim=0.05; 5) 

voltage quasi-PR control: kpv=1.5, kr1=200, kr5=150, kr7=100, kr11=50, kr13=20, r1,5,7,11,13=6.5rad/s; 6) 

current P control: kpi=50; 7) virtual impedance: Rv=0.5, Lv=0.25mH; 8) pre-synchronization: kpr=500, 

kir=50. 
The system starts in island mode with linear load. The rectifier load is added at 0.1s. The operation 

of pre-connecting to the grid is begun at 0.25s, before connecting to the grid at 0.45s when the grid 

switch is closed. At 1.5s, the system returns to be island mode when the grid switch is opened.  

Figure 4 shows the inverter output voltage and its frequency spectrum analysis waveforms in island 

mode. Figure 5 shows the inverter output current and voltage frequency waveforms under rectifier 

load in island mode. Figure 6 shows voltage tracking and the inverter output power in grid-connected 

mode waveforms. Figure 7 shows the grid current waveforms and FFT spectrum of iga. 
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(a) Inverter output current                                                  (b) Voltage frequency  

Figure 5. Inverter output current and voltage frequency waveforms with rectifier load added at 0.1s 

It can be seen from figure 4(a), that when the rectifier load is added in island mode, the deviation 

between output and rated voltages with the improved droop control is smaller than that with the 

traditional droop control. Under rectifier load in island mode, the total harmonic distortion (THD) of 

output voltage uoa, by harmonic voltage quasi-PR control (H-quasi-PR, THD=1.13% shown in figure 

4(b)) is better than the one (THD=3%) without the harmonic resonant control, i.e. kr5=kr7=kr11=kr13=0. 

Figure 5(b) shows that the frequency deviation of inverter output voltage is within ±0.1Hz, which is 

small. In order to limit the current surge at the initial moment when the rectifier load is added, current-

limiting resistance is used. Figure 5(a) shows the current surge is relatively small. Therefore, the 

control scheme proposed in this paper can maintain the inverter output voltage and frequency stability 

in island mode. 

From figure 6(a), after 0.25s, the phase error between inverter output voltage and the grid voltage is 

eliminated with pre-connecting operation. Figure 7(a) shows that the grid current surge is very small 

and grid currents enters their stable states within 0.2s. Under rectifier load in grid-connected mode, the 

grid current THD by harmonic voltage quasi-PR control (H-quasi-PR, THD=3.70% shown in figure 

7(b)) is better than the one without the harmonic resonant control (THD=16.7%). The grid current 

THD=3.7%<5% meets the grid-connected requirements [13]. Figure 6(b) shows that the inverter stable 

outputs active power is 14kW and reactive power is 0var in grid-connected mode. 
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Figure 6. Voltage track at 0.25s and output power in grid-connected mode waveforms 
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Figure 7. Waveforms of grid current and its frequency spectrum analysis in grid-connected mode with 

rectifier load 

4. Conclusion 
This paper proposed an improved droop control scheme with virtual impedance added for three-phase 

inverter in island and grid-connected modes. Quasi-PR controller based on  stationary coordinate 

system is used in the voltage and current double closed-loop. Matlab simulation results show that: 1) 

when microgrid operates in island mode with nonlinear loads, the inverter output voltage distortion is 

small, and the inverter output voltage and frequency stability can be achieved; 2) when microgrid 

operates in grid-connected mode, the inverter outputs constant power and the grid current THD meets 

the grid-connected requirements. Therefore, the control scheme proposed in this paper provides a good 

performance for the microgrid control system. 
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