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Abstract. In order to reduce the adverse effects of uncertainty on optimal dispatch in active 

distribution network, an optimal dispatch model based on chance-constrained programming is 

proposed in this paper. In this model, the active and reactive power of DG can be dispatched at 

the aim of reducing the operating cost. The effect of operation strategy on the cost can be 

reflected in the objective which contains the cost of network loss, DG curtailment, DG reactive 

power ancillary service, and power quality compensation. At the same time, the probabilistic 

constraints can reflect the operation risk degree. Then the optimal dispatch model is simplified 

as a series of single stage model which can avoid large variable dimension and improve the 

convergence speed. And the single stage model is solved using a combination of particle 

swarm optimization (PSO) and point estimate method (PEM). Finally, the proposed optimal 

dispatch model and method is verified by the IEEE33 test system. 

1. Introduction 

With the increasing of energy shortage and environmental pollution, renewable energy power 

generation has been developed rapidly. As a representative of distributed generation, PV promotes 

renewable energy and becomes an effective complement to traditional form of power generation, 

which attracts more application recently [1,2]. With the PV capacity is increasing in distribution 

network, the operation faces two challenges. PV introduces new uncertainty to the distribution 

network [3,4], together with the large scale of loads, showing more complicated characteristics. In the 

other side, after the integration of large-scaled PV to the radial distribution network, the load flow no 

longer maintains the one-way distribution. So the traditional control mode does not meet the flexible 

control requirements. 

For the first problem, reference [5] proposes a chance-constrained programming based optimal 

control method of energy storage in view of the randomness of PV generation and wind power 

generation. Reference [6] proposes a robust interval voltage control strategy considering the 

uncertainties of PV output and load demand. The optimal reactive power compensation strategies and 

the allowable active power interval for the PV station are calculated in the strategy. Reference [7] 

establishes a fuzzy chance-constraints based day-ahead scheduling model considering demand 

response and its uncertainty. Then according to uncertain programming theory, the creditability 

change constraints can be turned into their clear equivalence class and the proposed model can be 

solved by mixed integer programming (MIP) method. For the second problem, in some works only 

reactive power of DG is used to keep the network voltages at an acceptable level [8,9]. While in the 

references [6,10,11], the real power also can be used as a control variable.  
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It is worth noting that reasonable strategy of the DG output to achieve the economic operation in 

the distribution network system, is important to the dispatch center for the further power generation 

plan. However, in these researches, the control of DG active and reactive power focuses on the voltage 

regulation within a day. And the day-ahead dispatch of DG output considering the uncertainties is less 

involved 

According to the power probability model of DG and load, an optimal dispatch model based on 

chance-constrained programming is proposed in this paper. In this model, the active and reactive 

power of DG can be scheduled at the aim of reducing the overall operating cost. Then the optimal 

dispatch model is simplified as a series of single stage model which can avoid large variable 

dimension and improve the convergence speed. And the single stage model is solved using a 

combination of particle swarm optimization (PSO) and point estimate. Finally, the proposed optimal 

dispatch model and method is verified by the IEEE33 test system.  

2. Day-ahead optimal dispatch model 

In this section, the ability of DG active power curtailment and reactive power auxiliary service are 

utilized to establish a model for optimal dispatch in active distribution network. This model aims to 

provide optimized strategy which guarantees the safe operation and reduce the operating cost 

considering the large scale of DG integration. 

2.1. Optimization objective 

The optimization objective for operating cost minimization primarily includes four parts, as shown in 

(1), which contain the cost of network loss, DG dispatch and power quality compensation. In the 

active distribution network, the DGs represented by photovoltaic generation system should be 

preferentially used. When DGs affect safety of network, however, it is still necessary to restrict the 

active power output of DGs. At the same time, the reactive power auxiliary service of DG can provide 

reactive power support to the system to improve the power quality. So in this paper, the DG 

curtailment, reactive power auxiliary service and traditional reactive power compensation are taken as 

the control variables for day-ahead optimal dispatch in distribution network.  
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   min max1 ,i i i i i noded p U U U S i      (2) 

Where, ΔT is the time period. NT is the number of dispatch periods. Closs(t) and Ploss(t) are the unit 

loss cost and total loss during period t. NDG is the number of DGs. Ci,cur(t) and Pi,DG(t) are the unit 

power cost and restricted power of i
th
 DG during period t. Ci,anc(t) and Qi,DG(t) are the unit reactive 

power cost and reactive power of i
th
 DG during period t. Ci,com(t) and di(t) are the compensation cost 

for substandard power quality and compensation power. Ui, U
min 

I  and U
max 

I  are the voltage amplitude, 

and its lower limit and upper limit of node i. Si is the apparent power of the node i. Ωnode is the set of 

nodes. 

2.2. Constrains 

2.2.1. Power balance 
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Where, Nnode is the number of nodes; Pi and Qi are the active and reactive power input at node i. Gij, Bij 
and δij are the conductance, susceptance and phase angle difference between nodes i and j. 

2.2.2. Safety. Safety restriction here primarily refers to the probabilistic constraints of node voltage 

and branch flow.  

  min max ,
ii i i U nodep U U U p i     (5) 

  max ,
ll l S lp S S p l    (6) 

Where, p{•} indicates the probability of the event in {•} comes into existence, Sl and S
max 

l  are the 

apparent power and its upper limit of the branch l, 
iUp and 

ijSp are the probability level of Ui and Sl,  

Ωl is the set of branches. 

2.2.3. DG output. The photovoltaic generation represents DG in this paper. The control variables 

contain active power curtailment and reactive power compensation. Considering the uncertainties, the 

control variable in this optimal dispatch model is set as the ratio of the practical output to the 

maximum output, following the constraint shown below： 

    : 0 1&0 1DG i ii          (7) 

Where, αi and βi are the ratios of the practical active and reactive power output to the maximum 

output for DG i.  

2.2.4. reactive power compensation 

 
min max

, , , ,i C i C i C CQ Q Q i    (8) 

Where, Q
max 

i,C and Q
min 

i,C are the capacity upper and lower limit of reactive power compensation devices 

respectively. ΩC is the set of reactive power compensation devices. 

This optimal dispatch model is a dynamic optimization model with multi-period coupling. It is 

should be noted that the reactive power compensation devices represented by capacitors, should limit 

the actions numbers within a dispatch cycle to extend the use life. In this paper, in order to highlight 

the chance-constrained model and the solving method, the capacitor problem of multi-period coupling 

is simplified as a reasonable set of NT based on action number constraint. In this paper, a NT is set to be 

4, then dynamic optimization problem is simplified to several static chance-constrained programming 

problems. 

3. Optimization method 

3.1. Stochastic load flow based on point estimate method 

Based on point estimate method (PEM)[12,13], the moment of relative variables can be calculated 

using the probability density function of random variables. According to the moments, the estimated 

point set and the corresponding probability of each point are obtained. Then the probability 

distribution of the nonlinear function can be obtained. 

It is assumed that X is an n-dimension random variable, the probability density function is f(x), and 

Y=h(X) is a nonlinear function taking X as the variable. PEM can replace the joint probability density 

function with probability set. In this process, the j
th
 order center moment of the random variable Xi is 

calculated firstly:  
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Where, λi,j is the j
th
 order center moment of the i

th
 dimension in X. μi, σi and fi(x) are the 

mathematical expectation, standard deviation and the probability density function of Xi respectively. 

The position coefficient and the corresponding probability of estimated points can be obtained using 

the parameters above based on the 2-point estimate method: 
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Where, k is the index of estimated points, and in the 2-point estimate method, k=1,2. ξi,k  and wi,k are 

the position coefficient and the corresponding probability of the k
th
 estimated point for Xi. 

Based on the position coefficient and probability, the estimated points of Xi can be obtained: 

 , ,i k i i k ix      (12) 

According to the nonlinear function between Y and X, the function value of Y is calculated based on 

each estimated point xi,k. Then the moments of Y can be obtained: 
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Finally, the probability density of Y can be obtained according to the Cornish-Fisher series 

expansion method. 

In this paper, the optimal dispatch variables contain αi. If the probability density function of the 

maximum active power output P
max 

i,DG is fi(P
max

), the central moments of αiPi,DG,, which represents the 

actual output of the i
th
 DG after dispatch is: 
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It can be seen that the central moments of αiPi,DG and P
max 

i,DG are the same, which leads to the same ξi,k  

and wi,k, so the estimated point is: 

    , ,, ,i i i i k i i i i i k ii DG k
P             (15) 

It shows that the ratio of the actual output estimated points and the maximum output estimated 

points are all αi. Then the estimated points of the reactive power output can be obtained: 

 
      

22
max

,, , , ,i i i DGi DG k i DG k
Q S P    (16) 

Based on the above deduction, the estimated points of DG actual output can be calculated by the 

proportion and the maximum output estimated points. The calculation efficiency has been greatly 

improved.  
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3.2. Method for chance-constrained programming model 

The chance-constrained programming model can be solved by the stochastic sampling and intelligent 

optimization algorithms combined method. But when the dimentions of random variable is large, the 

sampling scale will also increase greatly in order to ensure full coverage of the sample space. Using 2-

point estimate method, only two estimated points should be calculated for one dimention of random 

variable, so a probabilistic load flow can be completed with 2n times of load flow calculation. The 2-

point estimate and particle swarm optimization(PSO) combined method can greatly reduce the 

computation burden. The specific solution procedure is as follows: 

 Step1: Carry out 2-point estimate to the random variable in a period of time, as (9)-(12) shown; 

 Step2: Initialize the group of particles with random assignment of velocity and position; 

 Step3: Carry out the load flow according to the estimated points and the particles as shown in 

(13), and obtain the moments of the parameters required by the objective function and the 

constraints; 

 Step4: Calculate the fitness value of each particle, using the moments of the parameters and 

the corrspongding probability density function; 

 Step5: Compare the fitness value with the personal best position pbest for each particle, and 

chose the better one as the new pbest; 

 Step6: Compare the fitness value with the global best position gbest for each particle, and 

chose the better one as the new gbest; 

 Step7: Update the velocity and position of particles;  

 Step8: End the process if meet the end condition, else go to Step3. 

4. Case verification 

In this paper, IEEE33 node test system is adopted to verify the proposed optimal dispatch model and 

method, with the specific parameters of the line and load can be found in [14]. Three photovoltaic 

generation units with the same parameters is integrated at nodes 13, 18, 22 25 and 29, with the 

parameters shown in table 1. Two three-phase shunt capacitor banks are respectively connected in 

node 14 and 30, with the capacity both of 5*120kVar. At the meanwhile, a three-phase SVC is 

connected in node 7, with the continuous adjustable capacity from -600kVar to 600kVar. In test region, 

the maximum irradiance is set as 1000W/m
2
. The upper limit of voltage is 1.05 pu and the lower limit 

is 0.95 pu. The Ci,cur, Ci,anc and Ci,com are all set to be 0.5 yuan/kWh. 

Table 1. Parameters of PV systems 

node 
Single System 

Area/(m
2
) 

Photoelectric Conversion 
Efficiency /% 

Maximum Irradiance 
/(W/m

2
) 

13,18,22,25,29 3000 14% 1000 

The case is set up two scenarios of light load and heavy load to verify the effectiveness of the 

proposed optimal dispatch model and algorithm. The load in light load scenario is set to 1/4 of the 

base load. While the load in heavy load scenario is 1.6 times. And the irradiance in the two scenarios 

are both 540 W/m
2
. 

4.1. Light Load scenario 
Due to the day-ahead optimal dispatch has achieved decoupled, the verification here focuses on the 
results within a period of time. The optimal strategies obtained by model of chance-constraint 
programming optimization (CCPO) and traditional optimization (TO) under the different standard 
deviation are shown in table 2. 

Table 2. optimal strategies in light load scenario 

Deviation Model C1 C2 C3 PV1 PV2 PV3 PV4 PV5 

5% CCPO 0 0 -324.1 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 
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TO 0 2 -306.5 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

10% 

CCPO 0 1 -600 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

TO 0 2 -306.5 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

In order to verify the effect of strategy considering the uncertainty, two scenarios are chosen from 

the multiple possible scenarios. In the normal scenario, the irradiance and load are set to be the 

mathematical expectation. In the extreme scenario, the irradiance is set to be a large one while the load 

to be the small one in the value range based on the probability density functions. Figure 1 and 2 shows 

the effect of the dispatch strategies on the voltage under two scenarios. And the operating cost 

comparison is given in the table 3. 

 

 

 

Figure 1. Voltage distribution with standard 

deviation of 5% in light load scenario. 

 Figure 2. Voltage distribution with standard 

deviation of 10% in light load scenario. 

Table 3. operating cost comparison in light load scenario 

Deviation Model 
Cost in Normal Scenario / RMB Cost in Extreme Scenario/ RMB 

no compensation Compensation no compensation Compensation 

5% 
CCPO 26.1 26.1 27.1 99.9 

TO 15.6 15.6 17.7 146.3 

10% 
CCPO 31.9 31.9 32.3 71.6 

TO 15.6 15.6 20.9 220.7 

It can be seen that the power quality is improved by the strategies of CCPO. Although compared to 

the CCPO, the operating cost of TO is less in normal scenario, once an extreme scenario occurs, the 

operating cost sharply increases due to the power quality compensation brought by the voltage beyond 

limit. And the operating cost of CCPO is little higher in normal scenario, but it also presents a better 

voltage stability at the same time. Although the cost will increase due to the power quality 

compensation in extreme scenario, the overall level of operating cost is relatively stable, making the 

operation safety and economy balanced. 

4.2. heavy load scenario 

Table 4 shows the optimal strategies obtained by model of CCPO and TO under the different standard 

deviation in heavy load scenario. 
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Deviation Model C1 C2 C3 PV1 PV2 PV3 PV4 PV5 

5% 

CCPO 5 5 -600 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0.9 

TO 5 5 -600 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0.6 

10% 

CCPO 5 5 -600 
α=1 

β=0.6 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=1 

TO 5 5 -600 
α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0 

α=1 

β=0.6 

Figure 3 and 4 show the effect of the dispatch strategies on the voltage under two scenarios. And 

the operating cost comparison is given in the table 5. Because the reactive power compensation ability 

of DG is limited, the effect differences of two strategies on the voltage is smaller than that in the light 

load scenario. But the strategy based on CCPO still presents the adaptability to guarantee the safe and 

stable operation in the extreme scenario. 

 

 

 

Figure 3. Voltage distribution with standard 

deviation of 5% in heavy load scenario. 

 Figure 4. Voltage distribution with standard 

deviation of 10% in heavy load scenario. 

Table 5. operating cost comparison in heavy load scenario 

Deviation Model 
Cost in Normal Scenario / RMB Cost in Extreme Scenario/ RMB 

no compensation Compensation no compensation Compensation 

5% 
CCPO 1102.5 1102.5 1158.0 2162.3 

TO 901.1 901.1 982.9 2562.9 

10% 
CCPO 1593.6 1593.6 1770.5 3425.8 

TO 901.1 901.1 1068.3 4949.8 

5. Conclusion 

Considering the uncertainties of DG and load in the day-ahead optimal dispatch, a chance-constrained 

programming is proposed in this paper. This model, using the control ability of DG output and reactive 

power compensation device, aims at the minimizing the overall operating cost. Then based on the 

simplification to a static optimization model, the chance-constrained programming is solved using a 

combination of particle swarm optimization (PSO) and point estimate.  

The verification in the IEEE 33 test system shows that the chance-constraint programming model 

presents better adaptability in normal and extreme scenarios, because of the consideration of 

uncertainties. Compared to the TO, although the operating cost of CCPO is little higher in normal 

scenario due to the control margin, it can guarantee the operation safety in extreme scenario and 

reduce the compensation cost caused by the voltage beyond limit. In the active distribution network 

with large scale DG integration and complicated uncertain characteristics, the day-ahead optimal 
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dispatch model and method based on the chance-constrained programming can effectively reduce the 

adverse effects of uncertainty on optimal dispatch. 
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