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Abstract. Two-dimensional (2D) materials have gained enormous attention in recent years 

owing to their huge potential in future electronics and optics. On the one hand, conventional 

2D materials like graphene, MoS2, h-BN are being intensively studied, on the other hand, 

search for novel 2D materials is at a rapid pace. In this study, we have investigated electrical 

properties of 2D nanosheets of ultrathin Indium Selenide (InSe), a member of the III-VI 

chalcogenides’ family. The InSe layers were prepared via micromechanical cleavage of its bulk 

crystal and were integrated into a field-effect transistor (FET) device as the transport channel. 

On characterizing the InSe-based FETs, InSe showed n-type conductance with the mobility of 

2.1x10-4 cm2V-1s-1.  

1.  Introduction 

The electronic industry is teeming with new devices. An ever-increasing challenge to beat Moore’s 

law has led to the development of devices which are as small and compact as possible. The transistors 

today are already reaching nanometers (nm) of channel length [1]. However, as the devices are 

approaching sub-10 nm dimensions, it’s becoming increasingly difficult to follow Moore’s law. 

Silicon (Si), the dominating material in all electronic devices so far, is predicted to fail the sub-10 nm 

technology transistors because of severe short channel effects [2]. With this respect, two-dimensional 

(2D) materials have gained enormous attention in recent years owing to their intrinsic properties which 

compensate for the drawbacks of Si at such small dimensions [3-5]. Due to quantum confinement, they 

exhibit properties different from their bulk phases and thus, offer an opportunity to carry forward 

further miniaturization of electronic devices.  

2D materials are theoretically known since decades [6-7], however, their first experimental proof 

came only in 2004, when Graphene was isolated from its bulk form Graphite [8]. Since then the field of 

2D materials is booming, leading to more than 600 2D materials currently known [9-10]. The family of 

2D materials consists of conductors, insulators and semiconductors, which are being intensively 

researched for their applications in the fields of electronics, optics and sensing [9-11].  

Semiconducting 2D materials having a finite band gap, excellent transport properties and 

mechanical flexibility are of particular interest for the electronic industry. Transition metal- 

dichalcogenides (TMDCs) like MoS2, WSe2 are one of the most prominent classes of 2D materials, 

showing excellent semiconducting properties and thus, being researched world-wide [12-14]. Another 

class of semiconducting 2D materials rapidly gaining interest is the family of III-VI chalcogenides. 

These are layered materials with the formula–  
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MX (M=Ga, In; X=S, Se, Te), arranged in X-M-M-X tetra-atomic thick layers [5] 

Their thermal stability and absence of dangling bonds make them highly suitable for nano- 

electronic and photonic applications [15]. Though many theoretical investigations have been done for 

these materials, very limited experimental knowledge is available regarding their performance in 

nano-electronics [9, 16-17].  

Within the III-VI chalcogenide family, we have focused our study primarily on Indium Selenide 

(InSe). One of the major reasons is its relatively high stability as compared to other members of the 

family, which gave us the chance to characterize it over a length of time. Moreover, InSe has lighter 

electron effective mass (m* = 0.143 mo) and shows higher mobility (µ) of ~ 103 cm2V-1s-1 as compared 

to MoS2 (m* = 0.45 mo, µ = 50–200 cm2V-1s-1) [15] and thus, can be used for fast, high performance 

electronics where MoS2 has been proved undesirable. In this study, we have investigated electrical 

properties of atomically thin layers of InSe in order to understand the underlying transport phenomena. 

InSe consists of vertically stacked 2D sheets of Se-In-In-Se and has a honeycomb lattice as shown in 

figure 1. The atoms in the same layer are held by covalent bonds, whereas inter-layer bonding is via 

Van-der-Waals forces. In bulk form, InSe has a direct band gap of 1.3 eV at room temperature [5].  

 

 

 

 

 

 

 

2.  Experimental Section 

In order to understand the electrical properties of 2D InSe layers, we fabricated InSe-based field-effect 

transistors (FETs) in back gate configuration, where the transport channel was atomically thin layer of 

InSe.  

2.1.  Micromechanical cleavage of InSe ultrathin layers  

Atomically thin layers of InSe were obtained via micromechanical cleavage of its bulk crystal. The 

InSe bulk crystal (2H-InSe) used for this study was bought commercially from 2D Semiconductors 

with a purity of 99.995%. The bulk crystal was repeatedly peeled off with the help of a Scotch-tape to 

obtain few and single layers of InSe, which were deposited directly on highly p-doped Silicon (Si) 

substrates with 283 nm of SiO2 layer serving as back gate for the fabricated devices. The identification 

of single and few layers of InSe was done using the techniques of optical microscopy and atomic force 

microscopy (AFM) which have been discussed in later sections.  

2.2.  Device fabrication 

On top of the deposited InSe layers, metal electrodes (source and drain) were defined using high- 

precision electron-beam lithography (EBL). The electrodes were fabricated by depositing a                

Ti (5 nm)/Au (100 nm) layer by electron-beam evaporation, followed by standard lift-off process in 

acetone.  

2.3.  Device characterization 

The optical images of the InSe nanoflakes were taken with an optical microscope (OLYMPUS BX51). 

The thickness and roughness of the flakes were determined by tapping mode AFM in air using a 

Bruker Multimode 8 scanning probe microscope. The electrical measurements of the fabricated 

devices were carried out in back gate configuration in a semiautomatic Süss Microtec Probe System 

PA200 combined with a semiconductor characterization system (4200-SCS, Keithley Instruments). To 

maintain same environmental conditions during the electrical measurements of the devices, the 

temperature of the wafer chuck of the probe system was maintained at 25.0±0.5 °C by using a 

(a) (b) Figure 1. (a) Honeycomb structure of 

2D InSe, (b) layers of Se-In-In-Se 

stacked vertically to give the 

structure of monolayer InSe. Color 

scheme: Indium in brown, Selenium 

atoms in blue. 
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precision temperature control system. In addition to this, an air dehumidifier system was also used in 

order to maintain low humidity inside the probe system down to a dew point of -40 °C.  

3.  Results and Discussion 

Figure 2(a) shows InSe layers deposited on Si/SiO2 (283 nm) substrate via standard scotch tape 

technique as discussed above. In this method, different thicknesses ranging from single to bulk layers 

are deposited. However, one of the simplest and fastest techniques to distinguish between different 

layer thicknesses is optical imaging. Different layer thicknesses of InSe produce different color 

contrasts with respect to the interference of the underlying SiO2 layer on exposing them to the visible 

light. In figure 2(a) the change in color of the flakes with changing thicknesses can be easily seen. 

Thinner layers give a low contrast, which improves with increasing thickness or number of layers. 

Using AFM we confirmed the thicknesses of the selected layers as shown in figure 2(b).  

Figure 2. (a) Optical image and (b) AFM of InSe flakes on Si/SiO2 substrate; the number of layers– 

 1 L, 2 L... are labelled as measured under AFM. 

In our study, we have focused on electrical properties of ultrathin layers of InSe i.e. single or few 

layer structures. The optical image of one of our fabricated devices from InSe bilayer structure is 

shown in figure 3(a) and schematic of bottom-gate FET device on ultrathin InSe layer in figure 3(b).  

Figure 3. (a) InSe layer (dashed) 2.3 nm thick (as determined by AFM) contacted with Ti/Au metal 

electrodes, (b) schematic of bottom-gate FET, InSe serving as the transport channel.  

The channel length i.e. distance between the contact pads for this device is approx. 2 μm. We 

measured the electrical characteristics of the FET by applying a drain-source voltage (Vds) and a back 

gate voltage (Vbg) as shown in the schematic in figure 3(b). The measured output characteristic (Figure 

4(a)) shows that Au metal did not form ohmic contacts to the InSe layer. The non-linearity in the 

negative bias and no current flow in the positive bias shows formation of a Schottky contact. The 

transfer characteristics (Figure 4(b)) shows semiconducting n-type behavior with mobility (μ) of 

2.1x10-4 cm2V-1s-1, estimated using the expression of field-effect mobility:  

        μ = [dIds/dVbg] x [L/W] x [1/CoxVds] at Vds = 20V                                    (1) 

where Ids is the drain-source current, Vbg is the back gate voltage, L and W are length and width of the 

channel respectively, Cox is the capacitance per unit area of the SiO2 layer and Vds is the drain-source 

voltage. It should be noted that our values for the field-effect mobility are underestimated due to the 
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formation of Schottky contacts and indulgence of very high contact resistance in our two-probe 

measurements.  

Figure 4. I–V curves for InSe bilayer FET (a) Ids–Vds curve for Vbg sweep from 0 to 30 V, (b) Ids–Vbg 

curve for Vds sweep from -1 to 1V.  

4.  Conclusion 

In this work, we have investigated ultrathin layers of InSe, a non-conventional 2D material which still 

lacks in-depth experimental studies. The layers showed good electrical properties w.r.t. transistor 

performance and an intrinsic n-type behavior. However, the mobility obtained was very low as 

compared to theoretical estimations, which was attributed to high contact resistance due to formation 

of Schottky contact between Au and InSe layer or to the degradation of InSe surface in the ambience.  
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