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Abstract. The objective of this paper is to give a holistic view of the most advanced 

technology and procedures that are practiced in the field of turbomachinery design. 

Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. 

The popular techniques like Jameson’s rotated difference scheme was used to solve 

potential flow equation in transonic condition for two dimensional aero foils and later three 

dimensional wings. The gradient base method is also a popular method especially for 

compressor blade shape optimization. Various other types of optimization techniques 

available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It 

is observed that in order to improve compressor flow solver and to get agreeable results 

careful attention need to be paid towards viscous relations, grid resolution, turbulent 

modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated 
difference had most substantial impact on wing design and aero foil. For compressor blade 

shape optimization, Evolutionary algorithm is quite simple than gradient based technique 

because it can solve the parameters simultaneously by searching from multiple points in the 

given design space. Response surface methodology (RSM) is a method basically used to 

design empirical models of the response that were observed and to study systematically the 

experimental data. This methodology analyses the correct relationship between expected 

responses (output) and design variables (input). RSM solves the function systematically in a 

series of mathematical and statistical processes. For turbomachinery blade optimization 

recently RSM has been implemented successfully. The well-designed high performance 

axial flow compressors finds its application in any air-breathing jet engines. 

1. Introduction 

 Axial flow compressors are mostly used in air breathing propulsion especially in aerodynamic 

applications. The design of axial flow compressor is not an easy task to the researcher because of its 

complexity in profile and its flow characteristics. Compressor size can vary from few meters to tens of 
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meters in diameter, based on their applications. Till today recently the design of compressor two-

dimensional compressor under real viscous conditions or three-dimensional meridional flow or 

inviscid three-dimensional flow analysis was done. With the use of modern sophisticated 

computational techniques, it is possible to solve three-dimensional viscous flow analysis and also 

potential to forecast better results of three dimensional multistage compressors. Therefore, it is 

required to retool the design procedures to have efficient results and physical dependability of these 

modern techniques. 

 

In [1-2] discussed that the basic operations of an axial flow compressor were known and shown in the 

year 1853 to the FAS (French Academia des Sciences). Since then the development of axial flow 

compressor has been studied comprehensively and also slowly staging of compressor progressed 

meaningfully. To achieve high performance of the compressor the aerodynamics of each blade and 

stage(s) need to be understood fully. In this paper
1
 main focus is given to understanding the 

aerodynamic flow characteristics and recent design techniques followed to improve the performance 

of the multistage compressor by referring to various research articles. 

2. Understanding the Axial Flow Compressor Operation 

 

The compressor is the first component in the core jet engine among various parts shown in the figure 

1. The main purpose of the compressor is to increase the pressure ratio per unit stage working fluid 

using rotating shaft work. The axial flow compressor consists two set of blades one rotor and stator. 

The combination of rotor and stator together is called stage [3]. The working fluid which is entering 

from the earth atmosphere region accelerated through the rotor blade where the kinetic energy 

increases, then high kinetic energy of the fluid is further decelerated through the stator blades to form 

the high pressure. Stator blade is important to have proper pressure flow, by changing the energy 

associated with the swirl into pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Various components of a commonly used turbo-engine
 
[63]. 
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Figure 2: Various components of a commonly used turbo-engine
 
[63]  

Figure 2 represents a single stage axial flow compressor having a set of one rotor blade and one stator 

blade. This also represents the direction of working fluid which passes from left to right and for the 

rotor blades direction of rotation from bottom to top. Generally, every aircraft engine axial compressor 

has inlet guide vanes. These vanes will ensure that working fluid flow streamlines should be straight to 

the rotor blades to achieve high acceleration of mass flow rate in the blade rows when high accelerated 

working fluid leaves from the rotor blade exit, the flow is decelerated in the stator blade row and 

further enters into the next stage of the axial compressor.  

Depending on the application of the aircraft engine specifications the number of stages in a 

compression system varies. In any axial flow compressor increasing the number of stages increases the 

weight, cost of the system, decreases the overall efficiency but increases the total pressure ratio for the 

system. In the working axial compressor, the fluid enters into gradually smaller volumes resulting in 

an increase in stagnation enthalpy of air and an increase in the stagnation pressure. 

3. Axial flow compressor design  

The compressor undergoes wide variety of operating conditions during the flight. During the take-off 

operation of the aircraft jet engine it requires more pressure ratio through the compressor to generate 

enough thrust. To control the thrust the compressor operates at different mass flow rates to vary the 

compressor and turbine speeds [4]. Here the staging plays a vital role in maintaining the desired 

efficiency. Through literature review it is evident that early designs of compressor at transonic and 

supersonic conditions were failure
4
. In [5] discussed more about subsonic compressor designs. It is 

found that low reliability and poor efficiency of the compressor blade steered to bad designs. In the 

early designs the researchers believed that poor efficiency was because of shock patterns alone, but 

later after successful failure of designs it was renowned that losses traits to flow blockages those are 

because of shocks. Since then drastic improvement have been made in compressor blading profile 

design, hub to tip design and also tip to hub design. In [6] discussed briefly about the early designs of 

compressor blade. 

Through the existing designs it is evident that by increasing the number of stages in the compressor 

results in higher overall pressure rise, but at the same time the overall length of the compression 

system and weight also increases. Comparing with last stage the first stage of the compressor volume 

is larger, therefore the typical modern compressors are wide at the inlet. They generally have a conical 

shape and have somewhere amid 9 to 15 stages. Figure 3 illustrates the straightforward compressor 

design difficulty. The main components that need to be designed are the geometry of the blade rows 

and geometry of the blade end-wall contour. To accomplish design study on a mean stream surface 

(shown in figure 3) in an axisymmetric three dimensional multi stage compressor designs approach 

generally used. To achieve both the end wall geometry and blade geometry the mean stream surface 

was used as a baseline. This type of methods and findings may be found in reference [5]. 
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Figure 3: Compressor geometry design with endwalls and blade rows [1]. 

Considering from an aerodynamic perception, a more accurate three-dimensional design of 

compressor blade is very much essential as this safeguards the maximum possible blade loading.  

Structural and aeroacoustics responses are closely connected to aerodynamic design of a compressor 

blade. Through the literature it is evident that, the compressor blade load increases eventually 

structural deformation on the blade also increases ultimately leading to structural failure. An 

ineffective design of blades can naturally lead to greater than before acoustic response of the blade, 

from shock formations and rotor-stator interactions. Finally, it clears that the design of compressor 

system is a multidimensional problem. 

4. CFD studies on axial flow compressor performance 

Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. In order 

to improve compressor flow solver and to get agreeable results careful attention need to be paid 

viscous relations, grid resolution, turbulent modeling and artificial viscosity. Figure 4 shows the 

harmonic balance simulation of complete axial flow compressor. Initially turbomachinery compressor 

performance calculations using CFD were frequently done in two dimensions. Such two-dimensional 

cascade analysis for both turbines and compressors were calculated by many authors [7-10]. By 

nature, the flow in an axial flow compressor is unsteady and vertical [11-14] and therefore huge 

turbulence and perfect modeling of the viscous effects is imperative. 

 

 

 

 

 

 

 

 

Figure 4: Harmonic balance simulation of multistage axial flow compressor relative mach number
 

[64]. 

Ample of work done in progressing phenomenological and sophisticated simulation techniques to 

understand in addition simulate the stream flow behavior in compressor over the past two decades. 

The area of computational fluid dynamics during this time has undergone significant changes, giving 

engineers and designers having useful competence to model and study the intrinsically three-

dimensional flow in axial flow compressor. Most recently having increased computational power and 

developments in visualization tools and post processing three dimensional simulations of axial flow 

compressor rotor machines are feasible. Also researchers now have access to a plethora of data for 

justification of compressor codes with the accessibility of dependable experimental test data by [15]. 

Since then the analysis of single and multistage axial flow compressor blade passage flow has been 

developed using a number of three dimensional CFD codes [16-23]. Computational codes for 

turbomachinery multistage three dimensional compressor configuration have been developed by 

different authors [24-26]. Very recently
 
nitially developed compressible unsteady flow solver for an 
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isolated three-dimensional blade row, which was altered effectively to add in multistage competencies 

[27-28]. 

5. Background of axial flow compressor design methods 

The axial flow compressor blade design is broadly classified into two approaches, direct and inverse 

methods. In the direct design method, the edge geometry is analyzed directly by experiments and / or 

by a computational analysis. In this method either the existing coordinates (x, y, z) of the edge are 

changed or performance constraints that are directly affect the blade profile are changed. The profile 

of the blade is consequently analyzed and the effect of performance variables on its overall efficiency 

is evaluated. 

Introducing in the year 1970s the poplar techniques like Jameson’s rotated difference scheme [29-30] 

and used method were possible to solve potential flow equation in transonic condition for two 

dimensional aerofoils and later three dimensional wings. These advance techniques had most 

substantial impact on wing design and aerofoil. The same techniques also had significant impact on 

axial flow compressor design as the new schemes may possibly be coupled with early established 

potential flow solvers. 

In papers [31]
 
and [32] investigated transonic direct method into inverse design methods. CAS22 a 

programme developed by Dulikravich which has capable of shock free aerofoil cascades designing 

and valid to transonic shock free redesign of existing cascade two dimensional aerofoil and also to 

aerodynamic analysis. Meauze was developed some of other applications of inverse design approach, 

thereafter Dulikravich passing few years implemented same technique for three dimensional blades. 

In the year 1990’s drastically improvements in computational fluid dynamics, the stage three-

dimensional design and the flow analysis of compressor geometry configuration has been made 

possible. Significant work has been done on a four stage compressor through direct design analysis 

and showed that reiterating stage phenomenon where the blockage raises across the flow [33]. 

Complete three-dimensional inverse design approach for compressor blades in transonic flow was 

developed in 1993 [34].  After passing few years Dang et al redesigned NASA 67 configuration using 

three-dimensional inverse design method. In another investigation done on multi objective 

optimisation of compressor blades to find best blade profile with respect to working range and loss by 

[35]. 

In the recent years’ researchers introducing the concept of ‘sweep lean’. Where the term sweep 
describes about the moving blade in axial flow direction, whereas the lean explains the moving blade 

in circumferential direction. This concept is applying by many researchers [36-38] have applied the 

sweep and / or lean idea to multistage and single stage compressor configuration and found positive 

results. 

When the design constraints are selected in an ad-hoc manner direct design method can sometimes be 

trial and error. Provided it has own benefits compared with the inverse design method, which normally 

required more number of inputs out of which few were always unknown (like pressure distribution 

over 3D blade) so as to produce the preferred flow features. Hence, the inverse direct design method 

always advisable and usually preferred for finding the unknown performance parameters to acquire 

detailed knowledge of the flow. 

In the recent years’ researchers have described the importance of compressor blade aerofoil curvature 

scattering on its performance and showed the potential methods that can be used to design extremely 

differentiable blade planes [39-41]. A set of Chained G Bezier polynomials capable of generating 

compressor aerofoils developed by corral [42] and pastor [48]. 
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6. Aircraft system level engine design overview 

This study describes about an axial flow compressor blade design analysis component level. However, 

the design studies on turbomachinery configuration can also be done at an overall engine system level, 

where the focus is not on individual component
42

. At the Aerospace System Design Laboratory 

(ASDL) at Georgia tech has been extensively performed such system level design studies. In paper 

[43] proposed a probabilistic design methodology for commercial aircraft engine cycle selection. In 

paper [44] investigated an assessment of lost thrust method for analysis of gas turbine engine 

thermodynamic performance. In paper [45] also done another study on probabilistic methods to 

systematically make the decisions under uncertainty and rationally to solve the preliminary design 

calculations [62]. Another probabilistic sensitivity in the gas turbine engine system level design can be 

found in references [46-48]. 

7. Axial flow compressor optimization techniques overview 

For a variety of transonic flow design problems numerical optimization techniques have been used 

successfully. The design of compressor blade under aerodynamic perspective itself is a challenging 

task to a researcher. Initially, efficiency of the transonic compressor blade is most sensitive to its shape 

and hence the shape of the blade must be parameterized with required number of performance 

parameters are to be optimized. Provided in addition aerodynamic optimization design objective 

function problem is repeatedly multidimensional and non-linear reason is flow field directed by a 

system of non-linear partial differential equations.  The optimization also has constraints such as an 

acoustic characteristic, operating mass flow range by varying the rotor speed and others make the 

aerodynamics blade profile optimization an effective problem. Many more optimization techniques 

have been reported with degree of success such as artificial intelligence methods (neural network and 

evolutionary algorithms EA’s), orthogonal array method, response surface method (RSM), gradient 
based method. 

The gradient base method is most popular method especially for compressor blade shape optimization. 

This gradient based algorithm in which the optimum is investigated by estimating the local gradient 

information. Constrained minimization (CONMIN) uses gradient algorithm and has been efficiently 

used for wing aerofoil design by vanderplaats [48]. Gradient based method design widely used in 

subsonic and supersonic wing design [49-50]. Later further studied [51-52] detailed manner and 

implemented same gradient based method on centrifugal compressor and design of compressor 

aerofoil. 

Another type of optimization technique is Evolutionary algorithms (EAs). Evolutionary algorithms are 

quite simple than gradient based technique because it can able to solve the parameters simultaneously 

search from multiple points in the given design space. Recently EAs have been successfully used for 

solving the turbomachinery blade optimization problems found in references [53-55]. 

Response surface methodology (RSM) is another type of optimization algorithm. This method 

basically to design empirical models of the response that were observed and to study systematically 

the experimental data. This methodology analyses the function denotes the correct relationship 

between expected responses (output) and design variables (input). RSM solve the function 

systematically in a series of mathematical and statistical processes. For turbomachinery blade 

optimization recently RSM has been implemented successfully. Stacking line of the axial flow 

compressor rotor blades optimization was successfully carried out by Ahn [56]. To perform the shape 
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optimization in a single stage transonic axial flow compressor stator blade successfully used RSM by 

Jang in 2006 [57]. 

 

8. Literature of summary of recent developments on axial flow compressor under transonic flow 

conditions 

There is very little literature available in the unsteady and instability area. Very little is known about 

its behavior and its possible configurations as function of field variables. Experimental and 

Computational Analysis conducted in this area are less and a lot more is to be done to conceptually 

understand the flow behavior and its implications on rotor. This regime itself is non-uniformity 

associated, and is different at different regions and time. The solution is basically guided by the type 

of non-uniformity. Much is required to be understood about the impacts of different possible 

discontinuities, on the flow structure through the rotor. Some region of cross section subjecting to 

discontinuities will have its implications on remaining blades flow passages and therefore full rotor 

analysis is very much inevitable. From the literature it is understood that there were no attempts made 

to generate these discontinuities at the entry face of the compressor rotor. 

There are varieties of configurations on non-uniformities possible at the entry face to rotor, like the 

one associated with pressure field or velocity and temperature and so on. Point to note here is they are 

not independent but are coupled effects. One discontinuity leads to the deviation of others. Though 

there is some theoretical data at hand very little is on the experimentation side. Since it is stall 

associated which is actually rotating by the rotor of the compressor in the aircraft engine. There were 

few literatures on Numerical analyses done towards understanding the effects of the tip sensitivity 

driven Distortion flow development in the rotor, by using some circumferential grooving and also 

there are few papers discussing about the stall inceptions and associated distortion. 

Attempts have been made to find out the characteristics of distortion associated in the compressor 

rotor with rotating stall in multistage compressor but not exactly to understand the distorted flow field 

through compressor. It was all about tip vortex and separation implications
58

 and it’s as such flow 
disturbance effects were experimented

60
. Therefore, it is required that first to understand the flow 

structure under distorted entry flow field and its development through the rotor. In this process, 

simulations come very handy providing more comfort and relief, with ease of analyzing. Moreover, 

this area is very vast; there are lots of things to experiment and analysis, therefore in this research 

literature steady state simulation on axial flow fan, for which there is experimental work available 

have been carried out
59

. So to understand its effects turbulent kinetic energy, its development and 

growth is also reported
61

 to some extent. There is still a lot more to understand with regard to vortex 

effects, unsteady disturbances and stall propagation, which guides passage flows. This served as the 

very Motivation to carryout distortion analysis of axial flow fan, and to find out the consistency of 

simulations and their ability to predict the unsteady flow field [58-59]. 

9. Conclusions 

Review of literature revealed that implications of nonuniformities were studied to some extent, by 

specifying conventional one dimensional(axial), inaccurate profile at the entry, and no attempt was 

made towards possibility of velocity fields in the radial and circumferential directions, in distorted 

region at the entry face. 

There are varieties of configurations on non-uniformities possible at the entry face to rotor, like the 

one associated with pressure field or velocity and temperature and so on. Point to note here is they are 

not independent but are coupled effects. One discontinuity leads to the deviation of others. Though 

there is some theoretical data at hand very little is on the experimentation side. Since it is stall 
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associated which is actually rotating by the rotor of the compressor in the aircraft engine. There were 

few Numerical analyses done towards understanding the effects of the tip sensitivity driven distortion 

flow development in the rotor, by using some circumferential grooving and also there are a few papers 

discussing about the stall inceptions and associated distortion. 

So to understand its effects turbulent kinetic energy, its development and growth is also reported to 

some extent. There is still need to understand with regard to vortex effects, unsteady disturbances and 

stall propagation, which guides passage flows. This served as the very Motivation to carryout unsteady 

flow analysis of axial flow fan, and to find out the consistency of simulations and their ability to 

predict the unsteady flow field. 

Some region of cross section subjecting to discontinuities will have its implications on remaining 

blades flow passages and therefore full rotor analysis is very much inevitable. From the literature it is 

understood that they were no attempts made to generate these discontinuities at the entry face. This 

regime itself is non-uniformity associated, and is different at different regions and time. The solution 

is basically guided by the type of non-uniformity. 

The computational work is to initiate with the intent to simulate and find out the effects and 

implications of the unsteady non uniform flow at the compressor inlet. Unsteady flow is not a fixed 

configuration problem. It is possible to understand it well upon investigation of flow through the rotor 

with different inlet conditions and varied problem specifications. 
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