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Abstract. Zn–22Al alloy was subjected to either one-step or two-step equal channel pressing 

(ECAP) to investigate the effect of processing temperature on its microstructure and room 

temperature (RT) superplasticity. In one-step ECAP processes, 4 passes ECAP were applied to 
the alloy at different temperatures: RT, 100°C and 250°C in two-phase region below eutectoid 

temperature and 350°C in single-phase region above eutectoid temperature. In two-step ECAP 

processes, one-step ECAP-processed samples were subjected to four more passes ECAP at RT. 

Considering the one-step ECAP processing, RT superplasticity increased with decreasing 

ECAP temperature as expected, and the highest RT superplasticity was achieved as 350% after 

4 passes ECAP at RT. On the other hand, application of 4 more passes ECAP at RT to the 

sample showing the lowest superplastic elongation after one-step ECAP (the sample processed 

at 350°C) resulted in the maximum RT elongation of 400% at a high strain rate of 5x10-2 s-1. 

These results suggest that first step temperature of two-step ECAP process is needed to 

increase above the eutectoid point of Zn-22Al alloy to achieve high RT superplasticity. These 

results were attributed to the changes in microstructure inside the single-phase and two-phase 

regions during the processes.  

1. Introduction 
Superplastic behavior can be explained as the high neck-free tensile elongation to failure which occurs 

at some polycrystalline materials. High tensile test temperature (about 0.5Tm where Tm is the absolute 
melting point of the material), low strain rate (between 1x10-5 s-1 and 1x10-3 s-1) and small grain size 

(typically below than 10 µm) are the main requirements that should be fulfilled in order to achieve 

superplasticity [1, 2]. Among these requirements, grain size can be considered as the most important 

one since any change in grain size also affects two other requirements. Decreasing grain size decreases 
the temperature and increases strain rate at which superplasticity are achieved [3, 4]. Therefore, grain 

refinement techniques have been among the main interests of scientist and engineers who deal with the 

superplastic behavior of metals.   
In order to achieve fine grained (FG) and/or ultrafine grained (UFG) microstructures, some thermal 

and thermomechanical processes have been applied to superplastic materials [5-18]. Considering the 

thermomechanical processes, severe plastic deformation (SPD) techniques have been developed and 
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performed successfully [5, 9-18] besides the conventional plastic deformation processes like rolling, 
extrusion and forging.  Furthermore, SPD techniques have been found to be more effective to achieve 

smaller grain size and thus higher superplastic elongation [14] comparing to the conventional grain 

refinement techniques. Equal channel angular pressing (ECAP) [5, 9-14], friction stir processing (FSP) 

[15], torsional straining (TS) [16,17] and cross-channel angular extrusion (CCAE) [18] are the main 
SPD techniques which have been used for grain refinement in superplastic materials. Among them, 

ECAP is the most commonly used one and it has been applied to many different superplastic materials 

in order to achieve FG and UFG microstructures. For this purpose Zn-22Al alloy as a model 
superplastic material is one of the most commonly studied superplastic alloy and ECAP has been 

applied to this alloy at different temperatures as a grain refinement tool [5, 9-14].  

Effects of some ECAP parameters on the final microstructure and mechanical properties of the 
materials have been studied [19] including processing route, numbers of passes, pressing speed, back 

pressure and pressing temperature. Pressing temperature is considered as a key factor and it has been 

shown that lower pressing temperature leads to lower final grain size [19]. On the other hand, two-step 

ECAP in which 4 passes were applied to Zn-22Al alloy at 350 ºC followed by 4 more passes at RT (8 
total passes) resulted in higher superplastic elongation [14] compared to 8 passes ECAP performed at 

room temperature (RT) [5]. Thus, two step ECAP seems to be more suitable to achieve higher 

superplastic elongations than ECAP in which all passes are performed at low temperature. Regarding 
the dependency of final grain size of superplastic materials to the ECAP temperature, it will be 

beneficial to determine whether it is possible to achieve higher superplastic elongations by decreasing 

the first step ECAP temperature (like performing first step ECAP at 100 ºC or 250 ºC) of two-step 
ECAP processes or not.  Therefore, the main purpose of this study is to analyze the effect of first step 

temperature of two-step ECAP on the RT superplasticity of Zn-22Al alloy.  

 

2. Experimental procedure 
As-cast Zn-22Al ingot was homogenized at 375 ºC for 24 h and billets with dimensions of 13 x 13 x 

130 mm3 were machined from the ingot for the subsequent ECAP. After then, the billets were 

homogenized at 375 ºC for 48 h for the second time and quenched into ice-water. ECAP was 
performed as either one-step or a two-step processes. In the one-step ECAP, each billet was subjected 

to 4 passes at RT, 100 ºC and 250 ºC in the two phase region below the eutectoid temperature and at 

350 ºC in the single phase region above the eutectoid transformation temperature of the alloy. In the 

two-step ECAP, 4 more passes were applied to the billets at RT followed by the 4 passes performed in 
the first step. ECAP processes were conducted at 1mm.s-1 pressing speed using route Bc where the 

billets were rotated along their longitudinal axis among each passes. 

Scanning electron microscopy (SEM) was utilized for the microstructural examination after the 
applied processes. For this purpose, SEM examination samples were cut from the ECAP-processed 

billets as so examination plane was perpendicular to the extrusion direction (ED) of the billets using 

wire electro-discharge machining (wire-EDM). The samples were ground, polished and etched in a 
solution containing 5 g CrO3, 0.5 g Na2SO4 and 100 ml H2O. SEM was conducted using a JEOL-6400 

microscope. 

In order to evaluate the RT superplasticity after the applied processes, tensile tests were performed 

at strain rates ranging between 1x10-3 and 1x100 s-1. Dog bone shaped test samples having 2 mm x 3 
mm x 5 mm gauge section dimensions were extracted from the billets with their tensile axis aligned 

with the ED. All tests were repeated at least three times in order to confirm the validity of the tensile 

test results and mean of these tests results are given in the manuscript.   
 

3. Results and discussion 

SEM micrographs showing the microstructures of the alloy after the applied processes are given in 
figure 1. In these micrographs, the bright and dark contrast correspond to Zn-rich η- and Al-rich α-

phases, respectively. 4 passes ECAP at RT resulted in a UFG microstructure with 350 nm grain sizes 

(Figure 1(a)-(b)). In one-step ECAP processes, increasing the ECAP temperature up to 250 ºC also 
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increased the final grain size, and grain sizes after 4 passes ECAP performed at 100 ºC and 250 ºC 
were measured to be 500 nm ((Figure 1(c)-(d))) and 1 µm (Figure 1(e)-(f)), respectively. On the other 

hand, application of ECAP above the eutectoid temperature brought about more refined microstructure 

with 250 nm grain size (Figure 1(g)-(h)). However, the microstructure consists of some regions with 

lamellar structure (LS) after that process (Figure 1(h)). 
 

 
Figure 1. SEM micrographs showing the microstructures after one-step ECAP performed at: (a)-(b) 

RT, (c)-(d) 100 ºC (e)-(f) 250 ºC and (g)-(h) 350 ºC. 

 

Application of four more passes ECAP at RT to the one-step ECAP-processed samples resulted in 
more refined microstructures compared to one-step ECAP processes. 8 total passes at RT brought 

about 250 nm grain sized microstructure (Figure 2(a)-(b)). Grain sizes after 4 passes ECAP at RT 

following one-step ECAP at 100 ºC and 250 ºC were measured as 400 nm (Figure 2(c)-(d)) and 700 
nm (Figure 2(e)-(f)), respectively. Lamellar structure formed after 4 passes ECAP at 350 ºC was 

completely eliminated by 4 more passes ECAP at RT (Figure 2(g)-(h)). Lamellar-free UFG 

microstructure with 200 nm grain size was achieved instead [14].  
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Figure 2. SEM micrographs showing the microstructures after two-step ECAP processes in which first 

step was performed at: (a)-(b) RT, (c)-(d) 100 ºC (e)-(f) 250 ºC and (g)-(h) 350 ºC. 

 
It was stated previously that decreasing pressing temperature of ECAP resulted in finer grain sizes 

[19]. The final grain sizes obtained after one-step ECAP processes are in a good agreement with that 

conclusion except for the 4 passes ECAP applied at 350 ºC; i.e. below the eutectoid temperature the 
smallest grain size was achieved after 4 passes ECAP at RT. Regarding all one-step ECAP processes, 

on the other hand, although 350 ºC is the highest process temperature, the smallest grain size was 

achieved after 4 passes ECAP at 350 ºC. Considering ECAP temperatures of RT, 100 ºC and 250 ºC, 

the alloy was processed at two phase region, and grain refinement occurred due to the only ECAP. 
However, eutectoid transformation occurred at 350 ºC before the ECAP process, and ECAP performed 

in one phase region in that process.  In this process, the ECAP billets were quenched between each 

passes. It is known that, quenching above the eutectoid temperature results in refined microstructure in 
Zn-22Al alloy [20]. Thus, grain refinement effects of both ECAP and quenching are combined, and 

the smallest grain size was achieved after 4 passes ECAP at 350 ºC.  

Considering the grain sizes achieved after the applied processes, it can be concluded that 
decreasing ECAP temperature below the eutectoid temperature also decreases final grain size. 

However, processing the alloy above the eutectoid temperature results in more refined microstructure 
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with some lamellar structure which is not suitable for achieving high superplastic elongation [20]. 
Thus, in one-step ECAP processes it is beneficial to keep ECAP temperature as low as possible for 

desired microstructure for superplasticity. On the other hand, in two-step ECAP, the smallest grain 

size was achieved after 4 passes ECAP at 350 ºC followed by 4 more passes at RT. Therefore the alloy 

should be processed above the eutectoid temperature in the first step of two-step ECAP processes in 
order to achieve more refined microstructure.  

The RT superplastic elongations after the applied processes with respect to the initial strain rates 

are shown in figure 3. Considering the results of one-step ECAP processes, the highest RT elongation 
was achieved after 4 passes ECAP at RT as 350% at a strain rate of 1x10-1 s-1 (Figure 3(a)). 4 passes 

ECAP at 350 ºC, 250 ºC and 100 ºC resulted in maximum elongations of 110%, 195% and 315%, 

respectively (Figure 3(a)). Further grain refinement in two-step ECAP processes by means of 4 more 
passes ECAP at RT increased elongation to failure comparing to all one-step ECAP processes. In 

general, the sample subjected to 4 passes ECAP at 350 ºC + 4 passes ECAP at RT reflected to the 

highest RT elongation to failure as 400% at a strain rate of 5x10-2 s-1 (Figure 3(b)) [14]. 8 total ECAP 

passes at RT also resulted in high superplastic elongation of 375% 1 at 1x10-1 s-1(Figure 3(b)  
Decreasing grain size increases the maximum superplastic elongations in superplastic materials due 

to the effective grain boundary sliding (GBS) which occurs as the main deformation mechanism at 

more grain boundaries [3, 4]. Considering the maximum elongations after one-step ECAP processes, 
the results are consistent with this conclusion except for the maximum elongation obtained after 4 

passes ECAP at 350 ºC.  Although the alloy has the smallest grain size after 4 passes ECAP at 350 ºC 

among all one-step ECAP-processed samples, the lowest superplastic elongation was achieved after 
this process. Similar observation was also achieved in Zn-22Al alloy in [20]. It was shown that, 

lamellar structure inside the microstructure makes difficult the accommodation process of GBS by 

intragranular dislocation slip process and causes stress concentration especially near the lamellar 

structure. Thus, in the early stage of superplastic deformation (about 50% superplastic elongation) 
some micro-cracks nucleate near the lamellar structure and premature failure occurs [20]. Similarly, 

the unexpected low superplastic elongation after 4 passes ECAP at 350 ºC can be attributed to the 

partially lamellar structure which causes stress concentration and thus premature failure.  
 

 
Figure 3. Variations of elongation to failure with the initial strain rates after: (a) one-step ECAP, and 
(b) two-step ECAP processes. 

 

4. Conclusions 
In this study, the effects of one-step and two-step ECAP temperatures on the final grain size and RT 

superplasticity of Zn-22Al alloy were investigated. The main findings and conclusions can be listed as 

below. 
1. Decreasing ECAP temperature below the eutectoid temperature also decreases final grain size. 

However, processing the alloy above the eutectoid temperature results in more refined 

microstructure with some lamellar structure.  
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2. In one-step ECAP processes, it is beneficial to keep ECAP temperature as low as possible. On the 
other hand, the alloy should be processed above the eutectoid temperature in the first step of two-

step ECAP processes in order to achieve more refined microstructure.  

3. In one step ECAP, 4 passes at 350 ºC resulted in the lowest superplastic elongation although it 

brought about the lowest grain size. This unexpected low superplastic elongation was attributed to 
the partially lamellar structure which causes stress concentration and thus premature failure. The 

maximum RT elongation was achieved to be 400% at a strain rate of 5x10-2 s-1 after two-step 

ECAP process which resulted the lowest grain size among all applied processes.  
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