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Abstract. An overall approach to enhance service properties of Ti alloys is based on material 

nanostructuring in its volume and surface layer. In this work ultrafine-grained (UFG) structure 

is formed in Ti-6Al-4V alloy through equal channel angular pressing via the Conform scheme 

with subsequent drawing. Samples modelling the shape of blades are prepared. Their surface is 

subjected to ion implantation with N
+
. Fatigue tests are performed in the conditions imitating 

the stress-strain state of blades. It is shown the increasing the resistance of a high-cycle fatigue 

of blades due to formation of the UFG structure and subsequent surface modification in the 

material. The fatigue behaviour of the UFG alloy subjected to ion implantation is discussed. 

1 Introduction 

Development of modern branches of mechanical engineering imposes high requirements to service 

properties of structural materials and items produced out of them. In many cases it is important to 

ensure a set of properties, for example a combination of high fatigue strength, corrosion and erosion 

resistance along with a low specific weight of such items as high-load parts of power units and 

aircrafts. Ti alloys are widely used in practice for this purpose [1]. Ti alloys have a much higher 

specific strength as compared to refractory steels and Ni alloys [1, 2]. Today Ti-6Al-4V alloy is the 

most widely used one due to favourable alloying [1, 2]. 

As is known, there is generally a correlation between the fatigue endurance limit and the ultimate 

tensile strength for different materials [3] Recent studies testify to an increase in the fatigue properties 

of metals and alloys through formation of ultrafine-grained (UFG) structures using severe plastic 

deformation (SPD) processing [3, 4]. In most cases, this improvement is connected with enhancement 

of the monotonic strength as a result of microstructural refinement. The formation of a bulk UFG 

structure in Ti alloys by SPD techniques allows increasing their specific strength, fatigue resistance, 

fatigue life, which creates possibilities to enhance service properties of items made out of these 

materials [5-7]. Alongside with that, the surface condition plays an important role in resistance of parts 

operating in extreme conditions (high cycle loads, aggressive environment, elevated temperature, 

erosion impact, etc.) to external loads. Among successful and promising techniques of surface 

treatment in structural materials are the techniques connected with impact of concentrated energy 

flows, to which ion implantation belongs [8-13].  

The physical entity of ion implantation is introduction (implantation) of an alloying element in the 

surface layer of a part as a result of bombardment by ions with high kinetic energy [9, 10]. In 

particular, the surface modification of conventional Ti-6Al-4V alloy by ion implantation with N
+
 

enables improving its tribological [11], corrosion properties [12], creep rupture strength at 600С [13]. 
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As is known that ionized atoms or molecules of an alloying substance in the surface layer form a 

complex dislocation substructure, and ions introduced in the crystalline lattice of a metal base form 

solid solutions or new chemical compounds [9, 10]. Unlike coarse-grained (CG) materials, nucleation 

and accumulation of new dislocations are constrained in ultrafine grains with a high dislocation 

density [14]. Probably, this can affect the formation mechanisms and the modified layer parameters in 

the UFG Ti alloy surface and, therefore, the level of its service properties.  

Thus, the aim of this work is to study the influence of consecutive impact of SPD-processing and ion 

modification of the surface on the fatigue properties of Ti-6Al-4V alloy. To form a bulk UFG structure  

in the alloy, equal channel angular pressing via the Conform scheme (ECAP-C) is used. To study the 

fatigue resistance, samples modelling a gas turbine engine (GTE) compressor blade are produced. The 

surface of the samples is subjected to low-energy implantation with N
+
 ions.  

2 Material and experimental procedure 

The investigations are carried out on Ti-6Al-4V alloy (Ti-basis, Al – 6.6 %; V – 4.9 %; Zr – 0.02 %; 

Si – 0.033 %; Fe – 0.18 %; C – 0.007 %; O2– 0.17 %). The temperature of polymorphic transformation 

(TPT) is 975±5 °С. The initial billets with a diameter of 15 mm and 1000 mm long are subjected to 

heat treatment (HT) by quenching from Т=950°С (heating during 20 min) and consequent 4-hour 

annealing at 675°С [15]. Further the billets are subjected to 6 passes of ECAP-C on a die-set with the 

channels intersection angle ψ=120° (е = 4.5) at 550°С (the die-set heating is 350°С). The subsequent 

drawing at 450°С is performed till a rod diameter of 12 mm (35%), from which samples are 

produced for fatigue tests (Fig. 1). After the treatment, the samples are subjected to annealing at 500°С 

С for 1 hour to reduce the total density of dislocations, internal elastic stresses [7].  

a)    b)  

Figure 1 The scheme (a) and the image (b) of the fatigue sample.  

 

The microstructure is studied by optical and transmission electron microscopy (TEM) on a JEM-200B 

microscope with an accelerating voltage of 200 kV. The experimental X-ray data are produced using a 

diffractometer DRON-4-07, copper radiation was employed. The distribution of elements in the 

surface layer is studied with the help of Auger electron spectroscopy [16]. Auger profiling of samples 

in depth is performed via surface sputtering with ions of Ar
+
 with energy of  3 keV. The quantitative 

analysis of the surface composition is performed by comparing the intensities of sorted peaks of 

elements with account of the data on their atomic sensitivity factors [16]. 

Cylindrical samples with a gauge length of 15 mm and diameter of 3 mm are subjected to tensile 

testing on an Instron tensile machine at room temperature and the strain rate έ = 10
-3

 s
-1

. The fatigue 

sample surface is subjected to electrolyte-plasma treatment, which is performed at a voltage of 250-

270 V and Т=95С in the electrolyte on the basis of fluoride salts [17] to ensure the required surface 

roughness. The subsequent ion implantation (ii) with nitrogen N
+
 is carried out at an accelerated 

voltage of E= 300 eV and a dose of 2х10
19

 ions/cm
2
 [18]. The fatigue tests are carried out on the 

electrodynamic stand VEDS-400A on the basis of 2х10
7 
cycles under the symmetric (R=-1) bending in 

the first vibration mode. The vibration frequency varies from 930 to 1020 Hz, the maximum stress of 

the cycle varies from 500 to 640 MPa.  
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3. Results 

3.1  Microstructure and mechanical properties of Ti-6Al-4V after SPD processing 

Figure 2 displays the microstructure images of the initial (CG) Ti-6Al-4V alloy and that after the 

combined SPD - processing (HT+ECAP-C+drawing+annealing). The microstructure of the initial rod 

is a typical bimodal one with a size of primary α-phase grains of (10±5) µm and areas with a plate 

(α+β) structure. The primary α-phase fraction is about 65% (Fig.2a). The β-phase fraction does not 

exceed 12 % according to the X-ray results. After the combined SPD-processing the fraction of 

primary α-phase grains decreases to 25%, and its grain size reduces down to 5 µm (Fig. 2b).  

a) b)  

Figure 2 Microstructure of the Ti-6Al-4V alloy: (а) in as-received state and (b) after SPD-

processing: transversal section. 

Figure 3 displays TEM images of the billet microstructure in the transversal and longitudinal sections 

after SPD processing. The microstructure is mainly of grain character with clearly observed 

boundaries, which is connected with redistribution of the dislocation structure and formation of more 

defect-free equilibrium grain boundaries after the final annealing. The average size of structural 

elements is 20020 nm (Fig. 3a). Grain elongation is observed along the strain direction in the ratio 

1:2 in the longitudinal section of a billet (Fig. 3 b, c). The total dislocation density in the billet after 

SPD is about 4.5х10
15

 m
-2

, which is much higher than the dislocation density in the initial alloy 

(0.19х10
15

 m
-2

). 

It is seen from Table 1 that the UFG structure formation in the alloy results in enhancement of the 

ultimate tensile strength (UTS) from 1030 to 1460 MPa due to considerable reduction of the α-phase 

grain/subgrain size from 10 to 0.2 µm, which correlates well with the previously obtained results for 

this alloy subjected to conventional ECAP with subsequent thermo-mechanical treatment [5]. Some 

reduction of the relative elongation (from 15 to 8%) is also typical of Ti alloys after SPD [5].

b)  c)  
Figure 3 TEM images of the Ti-6Al-4V alloy microstructure after SPD-processing in transversal (a) 

and longitudinal (b, c) sections. 

 

Table 1 Mechanical properties of the Ti-6Al-4V alloy before and after SPD-processing 

State Average grain size, D, m UTS, MPa YS 0.2, MPa Elong.,% 

As-received 105 1030 850 15,0 

SPD-processing 0.200.02 1460 1380 8,5 

3.2 Ion implantation of the surface of UFG Ti-6Al-4V alloy blade samples. 

Atomic N
+,

 introduced in the surface of UFG samples, is confirmed by an X-ray diffraction pattern 

(Fig. 4). The value of the modified layer is estimated using the Auger spectroscopy [16]. Fig. 5 



4

1234567890

7th International Conference on Nanomaterials by Severe Plastic Deformation  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 194 (2017) 012035 doi:10.1088/1757-899X/194/1/012035

 

 

 

 

 

 

 

displays the concentration profiles of alloying elements and N in at. % in depth of the sample surface. 

On the average, the depth of N
+
 penetration in the surface does not exceed 6 µm. As is known that the 

value of the layer modified with N
+
 in Ti alloy at low-energy ion implantation can vary from 4 to 10 

µm depending on the structure state of the surface and radiation dose [8-10]. 

  

Figure 4 X-ray diffraction pattern of the UFG 

samples surface after N
+
 ion implantation. 

Figure 5 Concentration profiles of alloying 

elements in depth of the sample surface: 1-

Ti; 2–Al; 3–V; 4–C; 5–O; 6-N 

3.3 Fatigue tests of UFG Ti-6Al-4V alloy samples with ion implantation of the surface. 

Fig. 6 displays the fatigue test results of sample-items from CG and UFG Ti-6Al-4V alloys on the 

basis of 2х10
7
 cycles. The main increment in the fatigue strength is observed as a result of formation 

of the UFG structure in it (from 500 to 570 MPa), i.e. approximately by 15%. The similar result was 

achieved in [15], where the fatigue endurance limit of CG Grade 5 with a bimodal structure and UFG 

states were 600 and 690 MPa respectively on the basis of 10
7
 cycles of standard samples with a round 

section. Preliminary tensile tests of UFG samples with N
+ 

ion implantation show that the mechanical 

properties at room temperature practically do not change and are within the statistical spread. The 

surface modification of sample by ion N
+
 gave an additional increment in the fatigue strength, which 

was 600 MPa.  

4 Discussions 

In this work the ECAP-Conform technique applied in combination with drawing and annealing allows 

achieving effective refinement of α-grains in the Ti-6Al-4V alloy and forming a UFG structure with an 

average size of 200 nm and, thus, enhancing the UTS from 1030 to 1460 MPa. As it is mentioned 

above, the strength enhancement in Ti-6Al-4V allows increasing the fatigue endurance limit at room 

temperature, which is testified in previous works [5, 15]. The main difference of the current work from 

the previous ones is evaluation of the fatigue resistance of samples imitating the shape of a GTE blade 

(Fig. 1). The results of bench tests of such UFG alloy samples on the enhanced basis up to 2х10
7
 

cycles in the conditions close to operating ones regarding frequency and stresses, also showed 

improvement of fatigue resistance (from 500 to 570 MPa) (Fig. 6). 

The influence of UFG Ti alloy surface modification with N
+
 ions on the fatigue strength should be 

noted. On the one hand, the mechanical properties at room temperature practically did not change. 

However, after ion implantation the fatigue strength tends to improvement and it is 600 MPa (Fig. 6). 

This can be explained by the fact that the positive effect of surface modification is conditioned by 

alteration of the crack initiation mechanism. In particular it was shown in [10] that fatigue crack 

initiation in Ti-6Al-4V alloy samples occurred on the surface. In case of radiated samples fatigue 

cracks initiated at a distance of 25-150 µm from the surface. In this work the main contribution in the 
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fatigue strength of UFG alloy is made by grain refinement, i.e. grain boundary strengthening 

mechanism.  

 

 

Figure 6. Fatigue curves of CG, UFG and UFG+ii 

N
+ 

samples. 
Figure 7 Haigh diagrams: A(CG), A(UFG)  and 

M(CG) M(UFG) - ultimate values of the 

amplitude and mean stresses, corresponding for 

CG and UFG states. 

In engineering calculations of the design integrity and evaluation of the fatigue behavior of an item, 

probabilistic methods based on the Goodman line [19] in Haigh diagrams and corresponding fatigue 

safety factors are used. These diagrams allow seeing what stress amplitude material and/or an item can 

suffer without failing at the given mean stress. With use of the experimental data obtained in this 

work, the diagrams are plotted to determine the ultimate values of the amplitude A and mean stress 

M, shown in Fig. 7. Table 2 lists the values of F (UTS) and fatigue endurance limit σ-1 for the CG 

and UFG alloys studied in this work. Fig. 7 shows that the Goodman lines for the UFG sample and 

item are higher than those for the CG state. This testifies to the fact that the fatigue safety factor at the 

given mean stress m will be higher in the item with the UFG structure. For example, for the m =300 

MPa, the amplitude σа is close to the ultimate value А (CG) for the CG alloy as against the UFG alloy, 

for which the value σа is much lower than the ultimate one А(UFG) (500 MPa) (Fig. 7). The fatigue 

safety factor Sf  is determined via the formula [19]:      
 

  
       

  
  
  

, where a is the amplitude stress, 

m – the mean stress, f is the material strength (in this case, it is UTS);  -1 - the fatigue endurance 

limit at the stress ratio R=-1. It is seen from Table 2 that at the mean stress m=300 MPa, Sf is 0.64 for 

the CG alloy and 1.41 i.e. higher by 30% for the UFG one. 

 

Table 2 Evaluation fatigue safety factor Sf  at a=m=300 MPa for CG and UFG Ti-6Al-4V alloy 

 Endurance limit 

-1, MPa 

f (UTS), 

MPa 

Mean stress 

m, MPa 

Stress amplitude 

a, MPa 

fatigue safety factor, 

Sf 

CG   500 1030 300 300 1.12 

UFG 600 1460 300 300 1.43 

Thus, the above considered experimental data testify to a principal possibility for enhancement of 

service properties of items manufactured from Ti-6Al-4V with an UFG structure with subsequent ion 

modification of the surface with N
+
. It is known that parts of GTE from Ti alloys are exploited at 

temperatures up to 450С. One can assume that in these exploitation conditions, creation of a layer 

modified with N
+
 in the UFG alloy surface at elevated temperatures can cause improvement of the 

creep strength. A similar effect was observed in [13], where ion implantation N
+
 of Ti-6Al-4V alloy 
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with resulted in improvement of the creep strength at 600С. However, it requires more careful 

studies, which are planned to be performed by the authors in the future. Such a comprehensive 

approach to Ti-6Al-4V alloy hardening is promising for manufacturing of GTE items, for example, 

compressor blades, to which high requirements on operating properties at elevated temperatures are 

imposed.  

 

5 Conclusions 

1. It is established that formation of the UFG structure in Ti-6Al-4V with the average size of 

grains/subgrains of 200 nm by ECAP-Conform technique with subsequent drawing results in 

enhancement of the UTS at room temperature to 1460 MPa with a relative elongation of about 8 %.  

2. It is shown that consecutive impact of SPD and N
+
 ion implantation of Ti-6Al-4V sample surface 

ensures increase of the fatigue resistance in the conditions imitating the stress-strain state of GTE 

blades by no less than 20%. The fatigue safety factor Sf for the given acting stress increases by 

30%. 

3. The produced results demonstrate the perspectives for overall hardening of Ti-6Al-4V, which 

includes formation of a UFG structure in the volume by SPD techniques and subsequent 

modification of the surface with N
+
 ions to increase the service properties of GTE items. 
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