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Abstract. The self-similar and unsteady-state crystallization processes of binary melts with
a mushy layer are considered. Two analytical methods of solution of the mushy layer nonlinear
model with the moving phase transition boundaries are detailed. The obtained analytical
solutions are in good agreement with experimental data.

1. Introduction
It is well-known that crystallization processes play a key role in materials science and determine
different properties of solidified liquids and melts [1-3]. A standard description of crystallization
by means of the classical Stefan thermodiffusion model with a planar solid-liquid interface
works well far from always. This is explained by the fact that, in the certain circumstances,
a supercooled two-phase (mushy) layer arises ahead of a moving crystallization front [4-6].
As a result of this phenomenon, after a lapse of time, a crystallization domain becomes
divided into three regions: solid phase, mushy layer and liquid phase. In other words, a
mushy layer represents a region of morphological instability [7-10]. Due to the effect of
constitutional supercooling, different elements of the solid phase in the form of nuclei or dendrite-
like structures become capable to evolve in the mushy layer. Their evolution accompanied by
the released latent heat of solidification will compensate the constitutional supercooling and
the mushy layer as a whole will evolve in a non-equilibrium manner [11-13]. If the latent
heat of crystallization completely compensates the constitutional supercooling, the mushy layer
is termed as quasiequilibrium. A theoretical description of this crystallization scenario was
developed in [14-16]. A mathematical model describing these solidification conditions represents
a set of non-linear differential equations supplemented by the corresponding boundary conditions
imposed at the moving interfaces. In the case of steady-state solidification regime, this model
admits an exact solution [17-19] in the presence and absence of different non-linear effects such
as a weak convection, thermodiffusion and temperature-dependent diffusivity. A time-dependent
solidification scenario frequently met in practice is very important too. Two original methods of
analytical solutions of the non-linear transient mushy layer equations were developed in a series
of papers [20-24]. The present study is concerned with generalization of these methods for the
description of unsteady-state crystallization regimes.

The outline of this paper is as follows: Section 2 is devoted to a theoretical description of self-
similar solidification process with a planar front and as well as with a mushy layer; an analytical
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approach for the transient solidification conditions is described in Section 3; a summary of results
and conclusions are presented in Section 4.

2. Self-similar crystallization scenario

Let us consider a unidirectional crystallization process of a binary mixture from a cooled wall
shown in Figure 1 (z being the solidification direction). The semi-infinite domain z > 0 filled
with the liquid phase is initially maintained at the constant temperature T, and has the uniform
impurity concentration C' = ¢g. Let us also neglect the diffusion transport in the solid phase as
well as the gravitational force. The temperature of the cooled wall z = 0 equals T = T’g, which
is lower than the liquidus temperature.

2.1. Self-similar regime with a planar front
The temperature (T') and concentration (C') distributions in the solid (0 < z < h(t)) and liquid
(z > h(t)) phases are governed by the following transfer equations

or O°T
pSCpSE = k5ﬁ7 0<z< h(t), (1)
oT 0’T oC 0?C
PCpt sy = kg5, 5 =Dy 2> R1), (2)

where ps and p; are the densities of the solid and liquid phases, C),s and C),; are the specific heats
in these phases, D is the diffusion coefficient, and h(t) is the solid-liquid interface coordinate,
which moves into the liquid region and depends on time ¢.
The wall temperature is fixed
T=1Tp, 2z=0, (3)

and the far-field boundary conditions take the form
T— Ty, C—cy z2— 0. (4)

At the moving phase transition interface, we have the following liquidus and balance
conditions

T =—-mC, z = h(t), (5)
dh or T
i =k () —h(G) . ==no. (6)
dh oC
c% + D <8z>22h+ — 0, = = h(t). (M)

Here m is the liquidus slope, L is the latent heat of solidification, and subscripts A~ and AT
designate the solid and liquid sides of the moving front h(t).

The moving-boundary problem (1)-(7) can be solved by means of introducing the self-similar
variable 17 and the parabolic growth rate constant A

B z 5= h(t) (8)
"= JiDits ' iDits

where s = h%(0)/)\2, and \ represents the self-similar solid-liquid interface.
The self-similar solutions of equations (1)-(7) can be written out as [20, 25]

(Th - TB)erf(gsn)
erf(es\) ’

n <A 9)
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Figure 1. A scheme of solidification process with a planar front and mushy layer.

(Th — Two Jerfe(grn)

T(n) =Ty , A, 10
(n) + oxfe(z)) n> (10)
(Ch — co)erfe(n)
= A 11
C(n) CD + el“fc()\) ) 77 > Y ( )
where Tj, and C} designate the temperature and concentration at the front n = A, 5 =

DCsps/ks, and gy = \/DCyipy [y

Three unknown parameters Tj, Cj, and A can be found from the boundary conditions (5)-(7)
in the form

Ty, = —mCh, Cp —co = Cpi(N) = 163112?/)\)» (12)
B 1 Ty BTo L
mCri(A) {F(sl)\) + G(esk)} S GEN  FEN O (13)

Here we used the following designations

= p1Cpl | F(z) = V7 eXp(:L”Q)eI"fC($)7 G(z) = 7z exp(:n2)erf($)-

Psts
The self-similar front position is determined by equation (13). Note that a behavior of A as
well as the temperature differences 77 = —mcy — T and Ty = T + mecg has been demonstrated
in [25].

The constitutional supercooling appears ahead of the planar solid-liquid interface when the
concentration gradient becomes greater than the temperature one at z = h™, that is

?)Z < —mO;S, z=ht. (14)

Substitution of analytical solutions (10) and (11) into inequality (14) gives

(To/m) e F(A)
F(g\) —e?F(N\)’

CriN) > Gi(\) = (15)

If this inequality holds true, the constitutional supercooling exists ahead of the self-similar
solidification front n = A\ and, as a consequence, we must use a mushy layer model instead of
the frontal model above.
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2.2. Self-similar regime with a mushy layer

In the case of a mushy layer solidification scenario (Figure 1), the heat and mass transfer process
in this layer, a(t) < z < b(t), depends on the solid fraction ¢ and is described by the following
transfer equations

or o [ aT o . _
(PCp),, 9t~ 92 <km82> + PsLaa T =-mC, a(t) <z <b(t), (16)
oc 0 oC Oy B
or = 50 (DX5; ) + 050 x =1 al) < 2 < b0 1

where y represents the liquid fraction of a mushy layer and the thermal properties of a mush
are assumed to be volume-fraction weighted averages of the properties of the solid and liquid
phases [26], i.e.

(pCp)m = Xplel + (1 - X)pst57 km = Xkl + (1 - X)ks‘

The heat and mass balance boundary conditions imposed at the solid - mushy layer (z = a(t))
and mushy layer - liquid (z = b(t)) interfaces can be written out as follows

da oT oT da oc
pSLXaE o ks (62)2_@ a km <az)z_a+ ’ Caxa% N _DXa <az>z_a+ ’

psL (1 =xp) 4o = Fom <82>zb h <5Z>zb+ ’ "
db aC oc
Cb (1= xp) oo = Dxy (az>zb -b (82>zb+ ’

where subscripts a~ and a™* designate the solid and mushy layer sides of the phase transition
boundary z = a(t), whereas b~ and b designate the mushy layer and liquid sides of the second
boundary z = b(t).
A condition of marginal equilibrium reads as
oT oC
— =—m—, z=10b". 19
0z "o ¢ (19)
The last condition demonstrates that none of the liquid layer, z > b(t), is supercooled.
Let us introduce the following self-similar variables by analogy with (8)

N I )
“" ViDt+s ' ViDt+s

where the parabolic growth rate constants A, and A, determine the self-similar coordinates of a
mushy layer.

A nonlinear set of equations and boundary conditions (16)-(19) can be rewritten in the self-
similar variables (8) and (20) as

(20)

dc de dC d*C de mCps
(1l —p)— =L — + (1 - @)= — 2O, a = —L ), A 21
n( so)dn dndn+( @)dnz NC G @= T o A< <Ny (21)
dcC 2C de dC de
—2a¢2 1- — =[A+A — A== — + 22—, A, A 22
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ky

C=co+Ci(N), 1= Ap; A:E’ A =1-A, (23)

e Ealile, - S0 1) =00 .
R R
meﬁﬁ—mifﬂﬁjG@gg+a&£[c+zfyzmn:Am (26)
[sz(; + 2/\ac} Xa =0, n=2A. (27)

The boundary condition (24) implies that either x; = 1 or

_alCi(\)/Cri(N) — 1]
Xo =X = gg/aJer(kl/ks—l)' (28)

This makes possible to choose the boundary condition in the form y; = x; if 0 < x; < 1 and
Xp» = 1 otherwise [25]. The boundary condition (26) must be considered in the same manner.
Let us seek for the solution of the aforementioned problem in the form of series in 7, i.e.

o(n) = o + 11 + 122 + s,
(29)
C(n) = Co +nC1 +1°Cy + 3C3 + ...

Now substituting expansions (29) into equations (21) and (22), we arrive at two equations in
the zero-order approximation in n

@101 = 2(1 — (,OQ)CQ, 202 [A + (1 — A)QOD] + (1 — A)aplCl =0.

These equations show that the solution is trivial, that is 1 = 0 and Cy = 0.
The first-order approximation leads to equations for o and C5. Their solution reads as
follows

2 = (1= o) [A+ (1= A)go — 2 (B+ (1 - B)o)|

Cy = LO()\b)Cla LO(/\b) _ _(1 — A)(l — 900) +3€§ [/8 + (1 — /8)300] )

Substitution of solutions (30) into the boundary condition ¢(A\p) = @y = o + AZes leads to
a quadratic equation for ¢g(\y). Its solution reads

:tq/b% — 4&161 — bl (31)

2a1 ’

(30)

Po( ) = 9F =

a(W) =X [1= A =221 = 8)], i) = [2008 = 02 = 1+ 203(1 - 28)] ,

(X)) = op(N) — A (A - 5?5) s (M) =1 = xp( o).

The boundary condition (23) implies that

Co(N) = co + Ci(M) = MCi [T+ A Lo(W)] - (32)
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Let us consider the case when y, # 0. Then we have from condition (27)

O — _ 2)\a [CQ + Cz()\b)] <33)
DT T 202 = 2000 + Lo(As) [BA2 + 202 — 20,03

The boundary condition (25) leads to

C1(M) = Hi(Xp), Hi(X) = " m() [lHJf)E’)b;%Lo(Ab)] ’ (34)
) 2
H(Xp) = 2N [kz %((;\:)) Efs - Xb)} '

Now the boundary condition (26) gives

ks

Equations (33)-(35) enable us to find A\, and Ap.
When A\, < Ay, one can obtain an explicit solution. In this case, we get from expressions

(33) and (34)
7"2 — 47 — T
Aa(Ny) = tyrz - Anth o (36)

27“1
ri(A) = Hi(A) (24 3Lo(M)), 12 (N) = 2[eo + Ci(M)] = 2H1 (M)A (1 + AFLo(M) ) -

Note that our numerical solutions show that equation (36) is valid in the case of its positive
root. In this case, equation (35) determines the growth constant .

Now let us consider the case ¢, =1 (x4 = 0). The coefficints ¢, @2, Co, C1 and C3 can be
found as before by means of expressions (30)-(32) and (34), while )\, is determined by equation
©0o(Np) + A2¢2(Np) = 1. Its solution gives

2 k T
22, 2K mlxa) (¢, +3A303)] Glesha) + 2Mas? [Oo + Al NG+ =) = 0. (35)

1 — o(Ap)
p2(Xo)

Note that the analytical solutions of self-similar solidification scenario are described by
expressions (24) and (29)-(37).

The obtained analytical solution is demonstrated in Figure 2. A self-similar mushy layer
appears a result of constitutional supercooling at a critical point T3 > 1.776°C and A > 0.154.
The method of approximate analytical solutions under consideration is in good agreement with
experiments [27]. More detailed analysis of a behavior of analytical solutions in the vicinity of
a critical point can be found in [20,25].

An important point is that we can construct an explicit analytical solution in the limiting
case ¢ — 1. In this case, equations (21), (24), (26) and (27) will be satisfied automatically, and
equation (22) leads to

>\a(>‘b) = (37)

2
BO_ o dC
dn? dn
Its integration gives
A/exp —g2 21 d21 + B, (38)

where constants A and B are determined frorn the boundary conditions (23) and (25) so that

k‘l Ci()\b) 62
— = B = ().
ksF()\b)+a ’ co + Cild)

A= —2)\1, exXp (6?)\1,) [
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Figure 2. The parabolic growth rate constants A, Ay, the mushy layer width AXA = Ay — A\, and
the volume fractions ¢, and @3 as functions of the temperature difference T7. The supercooling
occurs at 71 > T, ~ 1.776°C and A > 0.154. The model parameters are [25]: To, = 15°C,
co =14, m = 04°C L=335-10°J kg™, D=10"" m?2 s !, ks =2219 T m ! s~! °C~ 1
k; =0.544 J m~ 1 oC- L ps = 920 kg m~3, p; = 1000 kg m™3, Cps = 2.01 - 103 J kg™! °C~ 1
Cp = 4.187 - 103 J kg~! °C~L. The circles show experimental data [27].

3. Unsteady-state crystallization scenario

Let us now consider a unidirectional process of binary system crystallization (e.g. sea water
and ice) in the case of nonstationary boundary conditions at z = 0 (see Figure 1). Let the
temperature at the cooled boundary z = 0 is an arbitrary function of time, i.e. T = Ty () (e.g.
atmospheric temperature in the case of sea water freezing).

3.1. Unsteady-state crystallization regime with a planar front

First we consider the thermally controlled heat transfer process, which is described by the
temperature conductivity equation (1) in the solid phase (ice). If we treat the liquid phase
(ocean) as isothermal, its temperature may be regarded as constant, i.e. T' = Ty, at z > h(t).
Analyzing experimental data [23,28,29] and taking into account numerical solutions of the Stefan
problem [30,31], we conclude that the temperature distribution in the solid phase, in some cases,
is a nearly linear function of the spatial coordinate z. In this case, the temperature conductivity
equation in the solid phase becomes 0%7/0z? = 0. Physically it means that a relaxation time
of the temperature field is many times smaller than a characteristic time of the phase interface
motion. Thus, the temperature distribution obeys

Tw — Tat(t)
h(t)

The coordinate h(t) of front motion is determined from the thermal balance condition, which
takes the form

T(z,t) = Tu(t) + 2 0< 2 < h(t). (39)

or dh

a. = SL77
9.

Combining equations (39) and (40), we get

h(t) = jkL (th— / Tat(a)da), (41)
0

ks 2= h(t). (40)
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where we consider the initial condition h(0) = 0.

The ice width and transient temperature profiles plotted accordingly to expressions (39) and
(41) are demonstrated in Figure 3. It is easily seen that the frontal approximation differs from
experiments. This discrepancy can be explained by the fact that, in real situations, the freezing
process occurs in the presence of a phase transition (mushy) layer. The physical model of this
process and its analytical solution are given in the next subsection.

3.2. Unsteady-state crystallization regime with a mushy layer
Let us now analyze the transient solidification scenario with a mushy layer shown in Figure 1.
As before, we consider the linear temperature distribution in the solid phase, i.e.

T(2,t) = Toy(t) + C1(t)z, 0 < 2 < aft), (42)

where C] represents an arbitrary function of time ¢.
The temperature distribution in the mushy layer will be regarded as linear too

T(z,t) =T1(t) + Ta(t)z, a(t) < z < b(t), (43)

where the time-dependent coefficients 77 and 75 are determined below. Note that the linear
temperature profiles (42) and (43) follow from experimental data and numerical calculations
[28-31].

We use here the Scheil equation [32,33] to describe the mass transfer in a mushy region

0
5 (L= ©)C1=0, alt) <z <b(1), (44)
where C' stands for the solute concentration (brine salinity) of a mushy layer.

The temperature and concentration fields in the phase transition layer are connected by
means of the liquidus equation of the form

T =-mC, a(t) < z < b(t), (45)

where m, as before, is the liquidus slope.
The boundary conditions imposed at the solid phase (ice) - mushy layer interface can be
written as [25]

¥ = Pa, (T)z:a* = (T)z:a+7 z = a(t)v (46)
LV (1 - (Pa) % = ks (881;) _ - [ks@a + kl (1 - (Pa)] (ZZ) _ y &= a(t)’ <47)
Call—p0) G =D =) (52) . z=al0) (49

where Ly = psL and subscript a designates the solid phase - mushy region interface.
At the mushy layer - liquid phase (ocean) interface, the boundary conditions take the form

¥ = Pb; (T)zzb* - (T)z=b+ =Ty, z= b(t)a (49)

or

Ly = s+ (1=l (52) = =000, (50)

where Ty, is the constant temperature at z > b(t) (constant sea water temperature) and subscript
b denotes the mushy layer - liquid boundary.
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Integration of equation (44) gives the solid fraction

(90b — 1)Tw

PEO I R e

(51)

where expressions (43), (45) and (49) are taken into account.
Substituting now expressions (42), (43), (45) and (51) into the boundary conditions (46)-(50),

we obtain
pall) =1 Tat((gb%}l)(%a(t)’ %)
Crt) = SR L oy K (1= @ Ta0), K = 2 (53)
Tur(t) + Ci(t)a(t) = Ty + Ta(t) [a(t) — b(t)], (54)
[Ta(0) (6(1) — a(t)) — Tl (1~ 90) o0 = D1 — ) To(0), (59)
Ty(t) = “EE @) = ki + (1 - ) (56)
Ti(t) = T — b(t)To(1). (57)

The solid fraction at the boundary solid phase - mushy layer can be found from expressions
(52), (54) and (56) as

(QOb — 1)Tw
o) =1+ . 58
#el) = L )b/ ) [afE) = B(0) o
Now combining expressions (55) and (56), we get
Ly oy db da DLy db
- IS e y
(aft) — b(e) 5P 4 1| T = TR (5)

Substitution of functions C;(t) and T(t) from equations (53) and (55) into condition (54)
leads to the nonlinear differential equation of the form

LTu(en—1) |- )25 - 5 att
_ (Tw — Ta(t) — Lg”b(t);lif) [(a(t) — b(t) Lgf’% + Tw] . (60)

Here we used expression (58).
Equations (59) and (60) represent the nonlinear system for the determination of the moving
boundaries a(t) and b(t). Below we consider three possible analytical solutions of these equations.
First of all, we consider the case when both boundaries evolve slowly [28,29]. If this is really
the case, neglecting the term proportional to (da/dt)(db/dt) in equation (59), we come to

DLy oy
) =-—73

where a(0) = b(0) = 0. Combining now equations (59) and (60) and substituting a(t) from
expression (61), we arrive at

(th - /tTat(a)da> = Lve [1 _ DLvey (LVD +1-— K) (b — 1)} . (62)
0

b(t), (61)

b(t) =

~ o

o To® \ kT,



STPM2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 192 (2017) 012003 doi:10.1088/1757-899X/192/1/012003

Secondly, if we consider the case of small temperature fluctuations, i.e.

Lvey,,, db
b(t)—

Tar ()] ~ [Tw] <

we have from equations (59) and (60)

bt) = A ,/ 2 \/ "l_)le% K)e (63)

Analytical solutions (63) describe the case when the phase transition interfaces a(t) and b(t)
evolve as the square root of time and the solidification process is far from its initial stage
(25,34, 35].

Thirdly, let us consider the case when the solid phase - mushy layer boundary moves slower
than the mushy layer - liquid phase boundary, i.e. when da/dt < db/dt. In this case, substitution
of expression in square brackets from (59) into (60) gives

Tw
2D

S (on — D1~ K)a(t) — L2 (1) 1 Tyt - /nt a=0.

Again, taking into consideration a(t) < b(t), we finally obtain

[ (T - Tw(a))da
D! Tu(a)ble) "= V%G” fM ) (64)

Thus, expressions (61)-(64) completely determine the evolution of phase transition boundaries
a(t) and b(t) while the temperature distribution is governed by expressions (42), (43), (53), (56)
and (57). The solute concentration and solid phase distributions therewith can be found from
expressions (45) and (51).

The theory under consideration is compared with experimental data in Figure 3. The phase
interfaces a(t) and b(t) are plotted in accordance with analytical solutions (61) and (62). All
functions describing the mushy layer crystallization scenario essentially differ from the frontal
solutions. Note that analytical solutions are in good agreement with experimental data.

4. Concluding remarks

Let us emphasize in conclusion that the unsteady-state interface dynamics determined by
expressions (61), (62) and (64) becomes self-similar (i.e. becomes proportional to the square
root of time) when the external (atmospheric) temperature Ty is constant. This conclusion
connects the self-similar theory developed in Section 2 and the unsteady-state theory presented
in Section 3. What is more, the phase transition boundaries a(t) and b(t) lie between their
values corresponding to the maximum (7},,4;) and minimum (75,,;,) temperatures, that is

\/i (Tw - Tmax) t < b(t) < \/i (T’w - Tmm) t
in the case of interface dynamics (61) and (62).

The theory of interface dynamics in the presence of a phase transition (mushy) layer under
consideration can be generalized to take into account the processes of nucleation and growth
of particles in a metastable region. To do this, one can use the recently developed analytical
theories of transient nucleation for single-component [36-38] and binary [39, 40] systems and
analytical approaches under consideration.

10
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Figure 3. Ice thickness and temperature distributions as functions of time for (a), (b) buoy
5 and (c), (d) buoy 6 at lead 3 in accordance with the LeadEx experiment and the theory
under consideration [28,29]. The solid phase (ice) - liquid (ocean) interface is plotted by
the dot-dashed line. Numbers at the curves corresponding to each line show the depths (in
centimeters) measured from the ice/atmosphere interface z = 0. The temperature at z = 0 cm
is the atmospheric temperature (T4 (t)). The time scale used by the LeadEx group is expressed
in decimal days of 1992, abbreviated as UT and designated on the figure. The time origin in
minutes corresponds to 0221, day 98 UT. Physical parameters used in calculations: T, = —2°C,
Ly =3072:10° W-sm™3, kg = 2.03 W-m~1.9C~! k= 0.56 Wm~1.0C~!, D =1.2.1079 m?:s7 .
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