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Abstract. The paper discusses the theory of transport processes in one-component gas located 

in capillary subjected to resonant laser radiation and both temperature and pressure gradients. 

The equations for the kinetic coefficients determining heat- and mass transport in the gas are 

derived on the basis of modified Boltzmann equations for the excited and unexcited particles.  

The cross kinetic coefficients satisfy the Onsager reciprocity for all Knudsen numbers and laws 

of gas particles interaction with each other and with boundary surface of the capillary. Analysis 

of possible non-equilibrium stationary states of first and second order for the one-component 

gas in the capillary has been developed on the basis of the Prigogine theorem of stationary 

states. Equations describing the stationary states in Knudsen limit (Kn >> 1) and slip-flow 

regime (Kn << 1) were derived. 

1.  Introduction 

Thermodynamic description of transport phenomena is based on the laws of conservation of mass, 

momentum and energy and the principle of increasing entropy. According to the thermodynamics of 

irreversible processes
1
 the entropy production in the system is determined as a sum of products of 

generalized fluxes and generalized forces bound to those fluxes. These forces are generally associated 

with spatial inhomogeneity of thermodynamic parameters of the system or with a deviation of some of 

the internal variables from their equilibrium values [1]. 

Specific feature of light-induced transport phenomena is that they take place at homogeneous 

thermodynamic parameters of gas and under certain conditions and can generate temperature and 

pressure gradients [2]. These light-induced gradients stimulate their own fluxes of mass and heat in the 

gas. Theoretical description of these phenomena at the phenomenological level is impossible since the 

mechanisms of light-induced transport phenomena are associated only with the molecular-kinetic 

properties of the gas. Development of Onsager kinetic theory of these processes is the main objective 

of this study.  

Laser radiation under resonant interaction with the gaseous medium behaves as the «two-faced 

Janus». The radiation can simultaneously violate the gas equilibrium by internal and translational 

degrees of freedom. This means that radiation stimulates two types of fluxes, «scalar» flux, 

characterizing change of population of the particles energy levels compared to their equilibrium values 

and vector fluxes of mass and heat of the gas.    

Disequilibrium due to translational degrees of freedom is the result of asymmetry in the distribution 

functions of the excited and unexcited particles related to zero- component of the particles velocity 

vector in the direction of radiation propagation (Figure 1).  
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                          Figure 1. The distribution functions of excited and unexcited particles.  

In accordance with the Doppler effect, radiation interacts only with those particles having Doppler 

shift kv (k is the wave vector, v is the velocity vector of the particle) compensates detuning   of  

radiation frequency   relatively to ωmn , the m – n frequency transition from the ground state of 

particle n to excited state m. In linear approximation, when the magnitude of the particle velocity is 

much less than light speed, Doppler shift is determined by the expression  

 
ω-ωmn kv

 ,           
ω,ωmn 

 
(1) 

As a result of light absorption, distributions of excited and unexcited particles near the resonant 

velocity p kv are distorted due to the appearance of Bennett’s peak and dip [3] (Figure 1). The 

asymmetry of velocity distributions at  0  means the existence of fluxes of excited Jm  and 

unexcited Jn  
particles having opposite directions. The particles absorbing light change their transport 

characteristics. If buffer gas [2, 4] or boundary surface with which m- and n-particles interact 

differently [5-7] are available in the system, these fluxes do not prevent each other and gas as a whole 

moves. The flux of the absorbing gas  J J Jn m  
is known as the light-induced drift – LID [4-7]. 

Simultaneously with LID, resonant laser radiation stimulates light-induced heat transfer in the gas, 

designated as LIHT [8]. 

The problem becomes much more complicated if the state of the gas is governed by the pressure 

and temperature gradients in addition to the resonant radiation. Each of these gradients creates its own 

fluxes, interacting with the light-induced mass and heat fluxes. In the closed gaseous systems under 

certain conditions this interaction leads to occurrence of various nonequilibrium steady states. 

Cross-transport processes in one-component gas in the presence of laser radiation and both pressure 

and temperature gradients were overviewed in [9]. The paper was focused on the discussion of light-

induced baro- and thermo- effects that take place in closed heat insulated systems. However the proof 

of an Onsager reciprocity for the cross kinetic coefficients was not given in this reference. In addition, 

the entropy production due to the interaction of gas particles with the surface of the capillary was only 

stated, but not analyzed. 

The objectives of this work are as follows. 

First, based on the kinetic theory of gases we derive the expression for the entropy production in 

one-component gas in the field of the laser radiation in presence of the pressure and temperature 

gradients; and determine the generalized thermodynamic forces and corresponding fluxes;  

Second, we prove Onsager’s reciprocity for the cross kinetic coefficients at arbitrary Knudsen 

numbers and any nature of gas particles interaction with each other and boundary surface.  
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Third, using theorems of the non-equilibrium thermodynamics we consider the possible stationary 

states of the gas.  

2.  Statement of the problem 

We consider one-component gas in the capillary. Let capillary length L is much greater than its 

radius 0r  (L >> 0r ). The resonant optical radiation is uniform over the cross section of the capillary and 

propagates along the axis of the capillary as a traveling monochromatic wave of   frequency. In 

addition, the state of the gas is disturbed by the longitudinal temperature and pressure gradients. 

We will use the two-level approximation according to which the particles can be either in the 

ground state n, or in the excited state m. Particles absorbing radiation transit to an excited state. They 

change their transport properties, in particular, the collision cross-sections and accommodative 

characteristics. The process of radiative decay of the excited m level with frequency Гm  occurs 

simultaneously with the induced transitions. Thus, the gas can be considered as a mixture consisting of 

particles of equal mass m0 but with different interaction cross-sections and accommodative properties. 

The components continuously exchange the particles. 

The state of gas is described by distribution functions of excited mf  and unexcited nf   particles 

that satisfy the Boltzmann kinetic equations including terms responsible for the interaction of particles 

with radiation [10]:  
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Here Г is homogeneous half-width of the absorption line, E is the electric field amplitude of the 

light wave, mnd   is the dipole moment of m–n transition,  k is the wave vector, and 
ijI  are Boltzmann 

integrals of collisions between the particles of i-th and j-th kind. Rabi frequency mnG  determines the 

rate of induced transitions between the levels of particles per unit time and depends on the intensity of 

radiation. The saturation parameter ( ) v  characterizes the probability of radiation absorption per unit 

time by the particles which are moving with speed v and determines the width of the Bennett’s peak. 

The boundary conditions for the distribution functions of particles have the form [11]: 

  

   
 

 
, 0

, ,i j

j n m

f B j i f d
  

       
v n

v n v v v v v n v

     
(3) 

  0 v n        , ,i j m n ,   

where n is inward normal to the surface of the capillary, ( )if v  and ( )if v   are distribution functions 

of the reflected and incident particles on the wall of i-th kind, respectively,  , ,B j iv v  is the 

scattering kernel  (the probability density is such that the internal energy
jE  of the state j and the 

velocity v of the incident particle on the wall after reflection is equal to iE  and v). The scattering 

kernel satisfies the following conditions [11]: 

normalization 
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(4) 

reciprocity relation  expressing the principle of detailed balance on the gas—surface border 

 
   

 
       0 0, , , ,j j i if G B j i f G B i j          v n v v v v n v v v

  
(5) 

where 0if  is the equilibrium Maxwell-Boltzmann distribution function, iG  is the degree of 

degeneracy. 

Integrating (5) over velocity space   0  v n   and summing over the states j, taking into account 

the normalization (4), we obtain 
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(6) 

We choose a cylindrical coordinate system (r, ϕ, z), so that the polar axis z is directed along the 

axis of the capillary. 

In the weak-field approximation ( ( ) 1 v ) and at small pressure and temperature gradients, the 

distribution functions of excited and unexcited particles are insignificantly different from local 

equilibrium Maxwell-Boltzmann distributions: 

  
 0 1 ,i i if f h   r v

     
(7) 

The local equilibrium Maxwell-Boltzmann distribution looks like 
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(8) 

Here  T z ,    , in z n z  are the local values of the gas temperature, the total particle number 

density, and the population of the i-th level, respectively; 
B

k  is the Boltzmann constant.  

Due to linearization (7) and equation (6), the boundary conditions (3) on the wall of the capillary 

for the perturbation functions take the following form:  

  

   
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(9) 

To make a separate analysis for vector fluxes directed along the capillary and scalar fluxes 

associated only with the change of the level population we distinguish even and odd parts of the 

longitudinal component of the particles zv  velocity vector in perturbation functions and in saturation 

parameter 

     ( ) ( ) ( )z z z

    v v v ,                            ( ) ( ) ( )i z i z i zh h h  v v v ,                          (10) 
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Based on the assumptions made the kinetic equations (2) are linearized with respect to perturbation 

functions ih  and for steady gas state are written as: 
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Here r and v⊥ are two-dimensional radius vector and vector component of the velocity of particles in 

the cross-section of the capillary,  ij iL h  are the linearized collision integrals for particles of i-th and 

j-th kinds, 0 0,n mn n  are the equilibrium populations of the ground and excited states at the equilibrium 

temperature of the gas 0T , E  is the average internal energy of the particles in the equilibrium state. 

One can see [12] that the linearized collision integral ( )ij iL h off the odd function ih  over velocity zv  

is an odd function, i.e. ( ( )) ( ( ))ij i z ij i zL h L h  v v . 

The linearized kinetic equations (11) are separated into odd (“minus”) and even (“plus”) relatively 

velocity zv . The first equations describe vector fluxes that are associated with transfer of mass, heat 

and entropy of the gas along the capillary, second – with the scalar fluxes describing the pressure 

anisotropy and radiation-collisional heating or cooling gas [10]. 

3.  The equation of entropy balance  

Consider a volume V of gas contained in the capillary tube of length L. We define its entropy in 

conventional manner [1]:  

 
,

lne B i i

i m n V

S k dV f f d


     v
      

(13) 

The rate of entropy change in the respective volume of gas is equal to: 
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(14) 

Taking into account the kinetic equation (2) we obtain the entropy balance equation in the form: 

 
e

R c

V

S
di dV P P

t


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  jv
      

(15) 

where j  is vector  flux density of entropy: 
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RP  is the total entropy production in the considered volume due to radiation interaction with the gas: 

 
ln n

R B

m

f
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   
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  v

      
(17) 

cP  is the total entropy production due to the interaction of gas particles with each other: 

 
lnc B i i

i

P k dV I f d    v
      

(18) 

Consider the stationary state of the system when the entropy of the gas volume does not change in 

time. In this case, the entropy balance equation (15) can be written as: 

 R cdi dV P P  jv
      

(19) 

Using linearization of distribution functions (7) we obtain the entropy balance equation for 

stationary weakly nonequilibrium state of the system. 

Taking into account (11) and (12) the equation (19) is divided into equations with  vector («-») 

and scalar («+») fluxes:   

 
  R cdi dV P P  jv

      
(20)

 

We consider only vector fluxes. To simplify the equations hereafter we omit the superscript «-» in 

all the physical quantities, believing that function ( )i zh v  is odd relatively to velocity zv . 

Using the Gauss theorem and decomposition   2ln 1 2i i ih h h   , we get:  
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(21) 

When writing the second integral in the right-hand side of equation (21) the integration is performed 

only over the lateral surface wS  of the capillary, since the integrals over face sections S in volume V 

in the stationary state are equal in magnitude and are opposite in sign. 

The entropy production due to the interaction of radiation with the gas can be written as the sum of 

the entropy production due to the radiative decay of the excited level rP and by induced transitions: 

 0 0
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m
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(23)

 

Entropy production due to intermolecular collisions after linearization takes the form:  

 0

,

( )c B i i ij i

i j

P k dV f h L h d    v
      

(24)
 

To find the meaning of the second term of the right side of expression (21) we calculate the entropy 

flux from wall to gas due to collisions of the gas particles with the surface of the capillary: 
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Here ( ) gas

nq q n  is the normal component of the heat flux density in gas on the wall of the capillary, 

wT  is the gas temperature at the surface of the capillary. The condition of continuity of the normal flux 

of heat in the steady state is performed at any point of the surface:
gas cap

n nq q , where ( )cap cap

nq  q n  

is the normal component of the heat flux density in the wall of the capillary. 

The contribution of the second term in the right side of (25) in the entropy flux wP  depends not 

only on the thermal conductivity of the material of the capillary but also from the ratio of the radius of 

the capillary 0r  to its length L. In the limit 0L r  its contribution becomes negligible under any 

coefficient of thermal conductivity of the wall. In this case in any cross section of the capillary in 

stationary conditions the state of local equilibrium is established when the normal component of vector 

of the heat flux density is zero and the temperature of the wall is equal to the temperature of the gas at 

any point of section. Therefore further, the second term in the right side of (25) we omit. Hence: 

 

2

0( )
2

w

i
w B i

i S

h
P k dS f d     v n v

      
(26) 

Substituting (21) - (24) and (26) into (20) we obtain the equation of entropy balance in the gas for 

the stationary state: 

0 0 0

( )
( )( )

2

m z
c r w B i i B m n n m

i m,n V

Г
P P P P k dV h f d k dV f f h h d

 



            v v v
v

. (27) 

The entropy production inside the allocated volume of gas is caused by presence of the following 

sources of irreversible processes: intermolecular collisions ( cP ), radiative decay of the excited level 

( rP ) and gas particles interaction with the capillary surface ( wP ). 

From property of symmetry of the collision integral [13] follows that 0cP  . According to 

equation (23), we have 0rP  . Using reciprocity for the scattering probability density (5) and Jensen’s 

inequality for the continuous, strictly convex down functions [13], we get 0wP  . Thus, the entropy 

production in the gas due to vector fluxes is nonnegative 0P  .  

We transform the right-hand side of equation (27). We perform integration over the volume V like 

integration by capillary length L and cross-section area S. We take into account that in stationary 

conditions fluxes do not depend on the z coordinate, but the intensity of the radiation varies along the z 

axis due to absorption by gaseous medium. The dependence of z coordinate radiation intensity can be 

accounted for by introduction of the linear absorption coefficient  . Then the amplitude of the wave 

radiation electric field and, as a consequence, a square of the Rabi frequency proportional to the 

intensity of the radiation, in accordance with Bouguer law, can be written as 

                      ( ) (0)exp( )
2

E z E z


  ,         
2 2( ) (0)exp( )mn mnG z G z  .                        (28) 

where  0mnG  is the Rabi frequency associated with the intensity of radiation at the capillary 

entrance.  

The integration in the right-hand side of eqn. (27) along the capillary within appropriate pressure 

and temperature limits with regard to (28), allows us to write this equation as: 



8

1234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012013 doi:10.1088/1757-899X/192/1/0120131234567890

STPM2017  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 192 (2017) 012013 doi:10.1088/1757-899X/192/1/012013

 

 

 

 

 

 
Jk k

k

P X       (29) 

where the generalized fluxes kJ and forces kX  are defined as follows 
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n n

    
      

   
    v v

      (32) 

    

2

1

lnP B

p
X k

p

 
   

  ,  

2

0 1

1
lnT

T
X

T T

 
   

  ,    

 
2

(0) 1
1 exp( )mn

S

G
X L

k




 
   
 v   .                   (33) 

       
2 2 2 2

χ S

z z

Г Г

Г k k c Г k k c

  
     v v v v

, 

 V v U   ,       
2

k



    ,         

1 2

0

0

2 Bk T

m

 
  
 

v      ,        
ic  iv

v
 . 

Here V is molecule own velocity with regard to the gas average macroscopic velocity U,   is the 

laser wavelength, S is the cross-section area of the capillary; 1 1,p T   and 2 2,p T  are pressure and 

temperature of the gas at the ends of the capillary. 

The fluxes defined in eqn. (30) – (32) have an obvious physical meaning: 
pJ  and TJ   are 

respectively the mass and heat fluxes averaged over the cross-section of the capillary, SJ  is the 

entropy flux calculated per unit length of the capillary.  

Forces PX  and TX  for the case 2 1 1( ) 1p p p   and 2 1 1( ) 1T T T   were used in ref. [14] to 

describe non-isothermal gas motion in the channel. The force SX  is associated with the intensity of 

optical radiation, that is convenient because it is directly recorded in experiments [7].  

4.  Kinetic coefficients 

Perturbation functions in linear approximation are a linear combination of generalized forces 

 

p T S

i i P i T i Sh h X h X h X  
      

(34) 

Substituting (34) into eqn. (30) – (32), we obtain to the fluxes 

                                                  

Jl lk k

k

X 
     

 , , ,k l p T S
                                                    (35) 

where the kinetic coefficients lk  are defined by the following equations 

                  , P

pp P ih  ,            , T

pT p ih   ,               , S

pS p ih  , 
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                0 , p

Tp B T ik T h  ,         0 , T

TT B T ik T h  ,      
 0 , S

TS B T ik T h 
,                       (36) 

                 , p

Sp B S ik h  ,           , T

ST B S ik h  ,          , S

SS B S ik h   .                    

                 
p z  v  ,            2 5

2
T z ic  

 
    

 
v ,         

0

0

χ ( ) 1
j

S S z

i

n

n
   

  
 

v , 

              0

,

,l i l i i

i n m S

h dS f h d 


    v ,         , ,l p T S   ,       , ,i j n m  ;      i j  . 

Here lk  is the kinetic coefficient which determines contribution of generalized force kX  

proportional component to the flux J l . In so-called direct processes, force kX   defines the bound 

component of flux Jk , which is characterized by coefficient kk . The Poiseuille flux 
pp  and the heat 

flux TT  caused by the pressure and temperature gradients, respectively, are direct processes. The 

kinetic coefficient SS  characterizes the entropy flux in the gas due to velocity selective radiation 

absorption by molecules. At the same time the forces kX  stimulate non-bound fluxes J i ( i k ) 

characterized by kinetic cross-coefficients ik . In particular, temperature gradient stimulates gas 

motion along the capillary (thermal flux 
pT ) and the entropy flux (thermo-entropic flux ST ), and 

the pressure gradient causes heat flux (mechanocaloric effect 
Tp , [1]) and entropy flux (baro-

entropic flux
Sp ). The action of resonant laser radiation leads to the drift of the gas

pS  and the heat 

flux TS  which are directed across the baro- 
Sp  and thermo-entropic ST  fluxes respectively. 

5.  Onsager reciprocal relations  

According to thermodynamics of nonequilibrium processes cross-coefficients in steady state must 

satisfy Onsager reciprocal relations:  

 
lk kl  

      (37) 

To prove this we use the method proposed in ref. [12] and the modified in this study. Integrate the 

kinetic equation (11) for the odd perturbation functions ih  relatively to zv  along the length of the 

capillary. Substitute equation (34) for ih  in the obtained equations and then select summands under 

identical forces. As a result, we obtain the following system of equations for the functions 
l

ih : 

 

 
,

( ) ( )
( )

P
Pi P z

ij i

j n m B

h
L h

k L







 




v
v v

r

v

       

   0

,

( ) ( )
( )

T
Ti T z

ij i

j n m

h T
L h

L







 




v
v v

r

v
      (38) 

  
,

( ) ( )
( ) ( )

S
S Si S z

ij i i m

j n m

h
L h b h

L







  




v
v v v

r

v
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In the equations (38) for P

ih  and T

ih  the terms describing the radiative decay of the excited level are 

absent. This is due to the fact that the pressure and temperature gradients anywhere in the gas do not 

stimulate local perturbations of equilibrium populations of the particles energy levels. 

By analogy with eqn. (10) we present the perturbation functions l

ih as the sum of the even l

ih   and 

odd 
l

ih 
 parts with respect to the transverse component of the molecules velocity vector v . Then the 

equations (38) can be divided into even and odd with respect to the vector v   

  
,

( , ) ( )
( , )

P
Pi z P z

ij i z

j n m B

h
L h

k L




 




 




v
v v

r

v v
v

      (39) 

   0

,

( , ) ( )
( , )

T
Ti z T z

ij i z

j n m

h T
L h

L




 




 




v
v v

r

v v
v

      (40) 

  
,

( , ) ( )
( , ) ( , )

S
S Si z S z

ij i z i m z

j n m

h
L h b h

L

 
 

  




  




v
v v v

r

v v
v v

      (41) 

  
,( )

,( )

,

( , )
( , )

P T
P Ti z

ij i z

j n m

h
L h




 









v
v v

r

v
v

      (42) 

  
,

( , )
( , ) ( , ) 0

S
S Si z

ij i z i m z

j n m

h
L h b h


 

  




  




v
v v v

r

v
v v

      (43) 

In (39) – (43) we take into account that the collision integrals for the odd (even) perturbation functions 

are the odd (even) functions of the velocity vector v . 

Reciprocity for thermal and mechanocaloric fluxes (
pT Tp   ) was proved in ref. [14]. 

Noteworthy that the proof of kinetic coefficients reciprocity that describe the transport processes is 

associated with exposure to radiation. Let us prove reciprocity relation for light-induced drift and baro 

-entropic flux
pS Sp   . The equalities 

pT Tp     and TS ST    for cross-coefficients are proved 

similarly. 

We multiply the equations (39) by 
S

ih  and the equations (41)  by
p

ih . We subtract from the first 

obtained equation the second, summing over the states of the particles and integrating over velocity 

space and over the gas volume V. Taking into account the symmetry properties of the collision 

integral (commutativity of integral brackets) [13], we obtain   

      0 0

S P P S P S

pS Sp B i i i i i B i i i m

i iV

k dV f h h h h d k dV f h b h d     

          v v v
 (44) 

The first term on the right side of equation (44) taking (42) and (43) is equal to 

 

 0

0

, ,

( )

S P P S

B i i i i i

i V

P S P S P S

B i i i i i i i m

i j m n

k dV f h h h h d

k dV f h h h h h b h d

   



     





   

     

 

  

v v

v v
      (45) 

We substitute the equation (45) into eqn. (44) 
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 0

0 ( )

S P P S

pS Sp B i i i i i

i V

P S P S

B i i i m i m

i

k dV f h h h h d

k dV f b h h h h d

   



   

     

 

 

 

v v

v
      (46) 

According to the theorem of the equivalence of the infinitesimal functions [15], the second term on the 

right-hand side of (46) is the infinitesimal magnitude of the higher (fourth) order of smallness and 

should be omitted. After applying Gauss transform to the first term in right part of eqn. (46), we get 

 0 ( )( )

w

S P P S

pS Sp B i i i i i

i S

k dS f h h h h d          v n v
      (47) 

Demonstrate that the integral in the right-hand side of (47) vanishes. 

On the surface of the capillary the even 
l

ih 
 and odd 

l

ih 
 parts of perturbation functions have 

discontinuity and satisfy the following conditions:  

 

( ) ( )
( )

2

l l
l i iw
i

h h
h   


u u

v
      (48) 

 

( ) ( ) ( ) ( )
( )

2 ( ) 2

l l l l
l i iw i iw
i

h h h h
h 

   
  



v nu u u u
v

v n       (49) 

sgn( ) u v v n ,          , ,l P T S . 

Here ( )l

iwh u  are perturbation functions for the molecules reflected from the surface of capillary. The 

minus sign after the first equality of eqn. (49) is used at ( ) 0 v n , plus sign  at ( ) 0 v n .  

Eliminating from (48) and (49) ( )l

ih u , we obtain the connection between the functions ( )l

ih 
v  

and ( )l

ih 
v  at the boundary surface: 

 
( ) ( ) ( ( ) ( ))l l l

i i iwh h h     v n v v n v u
      (50) 

Substituting (48) and (50) into (47) for the case ,l P S   we obtain the equality 

 0 ( ) ( ) ( ) ( )
2

w

P S S PB
pS Sp i i iw i iw

i S

k
dS f h h h h d           v n u u u u v

      (51) 

Consider the integral 

 0( ) ( )
2

w

P SB
i i iw

i S

k
Z dS h f h d     u v n u v

      (52) 

Replace ( )S

iwh u  with (9) and integrate over the half space of the velocities 0 v n : 

 0

, 0 0

( ) ( ) ( ) ( , , )
2

w

P SB
i j j

i j S

k
Z dS h d f h B j i d

   

           
v n v n

v v v n v v v v v
      (53) 

Reciprocity for the scattering kernel (5) gives the equation (53) the form:  
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 0

, 0 0

( ) ( ) ( ) ( , , )
2

w

S PB
j i i

i j S

k
Z dS h d f h B i j d

   

          
v n v n

v v v n v v v v v
      (54) 

We replace v v ,  v v , ,i j j i  . Then 

 0

, 0 0

( ) ( ) ( ) ( , , )
2

w

S PB
i j j

i j S

k
Z dS h d f h B j i d

   

           
v n v n

v v v n v v v v v
      (55) 

When returning to complete space of velocities, with regard to (9) we get: 

 

0

, 0

0

( ) ( ) ( ) ( , , )
2

( ) ( )
2

w

w

S PB
i j j

i j S

S PB
i i iw

i S

k
Z dS h d f h B j i d

k
dS f h h d

 

         

  

   

  

v n

u v v n v v v v v

v n u u v
      (56) 

Substituting (56) into (51) we get
pS Sp   , Q.E.D. 

We note that the reciprocity relations are proved for arbitrary Knudsen (Kn) numbers and for 

any laws of interaction of the molecules with each other and with boundary surface. 

6.  Non-equilibrium stationary states   

Discuss now the nonequilibrium stationary processes when the boundary conditions imposed on the 

system do not allow it to reach the equilibrium state. These processes have been considered in the 

linear approximation in ref. [16]. In stationary states the entropy production unlike the equilibrium 

states does not disappear. According to Prigogine’s principle [1] in the stationary weakly non-

equilibrium states the entropy production is minimal. If n of thermodynamic forces act on the system 

with fixed k forces then steady state of k-order is established in the system. Now the fluxes associated 

with other n-k forces are equal to zero.  

Consider the possible stationary states. We start with the well-known effects.  

6.1. Thermomolecular pressure difference (TPD-effect) [1, 14, 17].   

Take the gas is in a closed system, which consists of two volumes connected by a capillary. If the 

radiation is absent, 0SX  , and the temperature difference at the ends of the capillary is fixed, 

TX const , then the pressure drop is established at the ends of the capillary. This phenomenon is 

known as thermomolecular pressure difference. In this case, the gas flow in the capillary is equal to 

zero, 
pJ 0 , i.e. the thermal transport is compensated by the Poiseuille flux. With the use of (33), 

(35) and (36) we get [17]: 

 
2 2

1 1 0

1
,

T

pT

T

B pp

p T

p T k T




 

   
 

      (57) 

where T  is the TPD index, defined as the ratio of the thermal creep of the Poiseuille flux. The value 

T  depends on the parameters of gas interaction with the surface of the capillary and Kn number. It is 

known [17] that in a slip-flow regime 
2~T Kn  , and in free-molecular limit   (Kn >> 1) in the case of 

specular-diffuse reflection of molecules from the capillary surface 1 2T  . 
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6.2. Mechanocaloric effect [1, 14].  

This effect is responsible for the thermal energy transfer under isothermal movement of the gas. If the 

radiation is absent, 0SX   and the gas temperature is uniform, 0TX  , then, according to (35), the 

heat flux is defined as 

 
2

1

J lnT Tp B

p
k

p

 
   

 
  .    (58) 

The magnitude of pq
 indicates the amount of heat that is transferred per unit time through the 

cross-section of the capillary under the action of pressure drop calculated per molecule: 

 

J

J

TpT
p

p pp

q


 
   .    (59) 

Given the symmetry of cross kinetic coefficients, 
Tp pT    from (57) and (59) we find connection 

between values pq
 and T   

 0p B Tq k T   
  .    (60) 

6.3. Light-induced pressure difference (LIPD-effect) [7, 18]  is the emergence of  the gas pressure 

drop at the ends of closed capillary under the action  of resonant optical radiation. 

Gas with uniform response to temperature  ( 0TX  ) is located in a closed capillary. The ends of 

the capillary can freely pass the laser radiation. The light-induced drift of the gas will stimulate the 

pressure redistribution along the capillary. The pressure inhomogeneity will cause the Poiseuille flux.  

In the steady state the light-induced drift will be compensated by the Poiseuille flux: 

 
J 0p pp p pS SX X   

  .    (61) 

From here taking into account (33) we obtain      

    
2

2

1

(0)1
exp , 1 exp

pSmn
ST ST

B pp

Gp
L

p k k
  



  
            v   .    (62) 

In the case of an optically thin medium ( 1L  ) expression for the parameter ST  simplifies 

and becomes 

 

2
(0)pS mn

ST

B pp

GL

k k


   
        v   .    (63) 

The value of the index ST  depends on the parameters of the gas interaction with the capillary 

surface, detuning frequency radiation from the center of the absorption line, the intensity and 

wavelength of the radiation, as well as on Kn number. As shown in [19], in a slip-flow regime 
2~ST Kn , and in the free-molecular regime ST  does not depend on Kn.               

6.4. Thermo-optical pressure difference (TOPD-effect) [19] is the phenomenon of the establishment of 

the gas pressure drop at the ends of closed capillary under the joint action of the resonant optical 

radiation and temperature inhomogeneity. This is a stationary state of second order in which two 

forces: TX and SX  are fixed.  
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Longitudinal pressure gradient arises in such a system as a result of the light-induced drift of gas 

and thermal creep. In turn it will cause a Poiseuille flux. As a result of competition of non-equilibrium 

processes in the system is settles in some steady state of dynamic equilibrium. It will be the state with 

a minimum entropy production at which the gas flux J p
 associated with the unfixed force

pX  must be 

equal to zero: 

 pJ 0pp p pT T pS SX X X    
  .    (64) 

From here follows: 

 
2 2

1 0 1

1 1
ln ln

pT pS

S

B pp B pp

p T
X

p k T T k

       
                  

  .    (65) 

Taking into account (33) we obtain the following expression for the pressure drop of gas at the ends of 

the capillary 

 
 2 2

1 1

exp

T

ST

p T

p T




 

  
 

  .    (66) 

6.5. Optocaloric effect is the light–induced heat transfer. 

Pressure and temperature of the gas are uniform, 0, 0p TX X  , the radiation force is 

fixed SX const . Then according to (35) the heat flux and the drift gas are governed only by the 

radiation force SX . Magnitude of 
Sq

 characterizes the quantity of heat which is transferred per unit 

time through a cross-section of the capillary under action the resonant optical radiation in calculation 

per molecule: 

 

J

J

TST
S

p PS

q 
 

   .    (67) 

6.6. Light-induced baro- and thermo-effect [9] is phenomenon of simultaneous occurrence of  pressure 

and the gas temperature difference at the ends of a closed thermally insulated capillary under exposure 

to resonant optical radiation. This is a stationary state of the first order when only the force of SX  is 

fixed. Light-induced gas drift and light-induced heat flux cause longitudinal pressure and temperature 

gradients in the system. These gradients, in turn, cause the own fluxes that will compete with light-

induced fluxes. In the system some steady state of dynamic equilibrium is eventually established. 

According to Prigogine’s principle [1], it will be state with a minimum entropy production at which 

the fluxes PJ  and TJ , associated with unfixed forces 
pX  and TX  must be equal to zero:  

                                                     J 0p pp p pT T pS SX X X     ,                                           (68)                                                        

                                                     J 0T Tp p TT T TS SX X X     .        

Equations for the light-induced differential pressure and temperature follow from here:   
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 0 pp TT Tp pT     
  

We see that longitudinal redistribution of gas pressure in the capillary is caused by light-induced 

drift (LID) and thermal transport, and also depends on heat fluxes. Thermal fluxes lead to the 

inhomogeneity of temperature that, in turn, is the cause of the thermal transport. The temperature 

difference is due to the light-induced heat transfer and the mechanocaloric flux,   and depends also on 

Poiseuille flux and light-induced drift. Fluxes of the gas make the pressure gradient and hence the 

mechanocaloric flux. 

Thus the resonant laser radiation can perform not only function of the piston compressing the gas, 

but also a sort of heat engine, capable to redistribute thermal energy in a gas.  
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