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Abstract. Fronts dynamics of periodic crystalline state, which invades the homogeneous state 

(liquid phase), are analysed. These fronts are considered as traveling waves of atomic density 

amplitudes. The propagation of amplitudes is described by the hyperbolic equation of an 

extended Allen-Cahn type for which the complete set of analytical traveling-wave solutions are 

obtained by tanh-method. The set of solutions includes previously known traveling waves for 

the parabolic Allen-Cahn equation of both extended and standard form. 

1.  Introduction 

The phase field crystal model (PFC-model) has been used to examine the dynamics of liquid-solid 

transformations, grain boundary migration and dislocation motion [1,2]. The PFC model is a continuum 

model that describes processes on atomic length scales and pattern on the nano- and micro-length scales 

[3]. This model is characterized by a free energy which is represented by a functional of a conserved 

atomic density field that is periodic in the solid phase and uniform in a liquid state.  

One of the simplest ways to analyze the PFC-model is to use the amplitude equations [4,5,6] which 

represent smooth profiles over picks of the density field. Taking into account slow and fast degrees of 

freedom for the crystal-liquid interface propagation, the amplitude equation of the PFC-model is 

described by the following partial differential equation (PDE) [7]: 

 

 
𝜕𝑢

𝜕𝑡
+  𝜏

𝜕2𝑢

𝜕𝑡2 = ∇2𝑢 − Κ0𝑢 + 𝑏𝑢2 − 𝑢3.  (1) 

 

The following notations are introduced in Eq. (1): 𝑢(𝑟, 𝑡) is the amplitude of atomic density (non-

conserved order parameter), 𝑟 is the radius-vector, 𝑡 is the time, the parameter 𝑏 can  be written as 

 

  𝑏 =
2𝑎

√15𝑣|∆𝐵0|
,   (2) 
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in which the driving force ∆𝐵0 describes 

 

 ∆𝐵0 = {
∆𝐵0 > 0, 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝛫0 = +1,
∆𝐵0 < 0, 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑎𝑛 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝛫0 = −1,

  (3) 

 

𝑎 and 𝑣 are the coefficients in the free energy density which has the form of Landau-de Gennes potential: 

 

  𝑓(𝑢) =
𝛫0∆𝐵0

2
𝑢2 −

2𝑎

3
𝑢3 +

15𝑣

4
𝑢4.   (4) 

 

In the equilibrium, the two states (liquid and solid) have the  equal energy with the parameter 𝑏 =
8𝑎2 135⁄ 𝑣 and the crystalline front has zero velocity. Finally, it should be noted that Eq. (1) can be 

considered as an extended Cahn-Allen equation which transforms to its standard form at 𝑏 = 0 and 𝜏 =
0 [8] that was suggested for the anti-phase boundary motion and then used in a wide spectrum of 

mathematical and physical applications [9], for instance, in the description of free-boundary problems 

by phase-field method [10]. In its complete form, Eq. (1) has been applied in the field of fast phase 

transitions [11,12], whose validity has been verified by comparison with experimental data [13], in 

molecular dynamics simulations [14] and by coarse graining derivations of the phase field equations 

[15]. For the parabolic type of the extended Allen-Cahn equation, i.e., for 𝜏 = 0, traveling wave has 

already been obtained by Wazwaz [16]. 

Generally, PDE can be analyzed using an important class of traveling wave solutions which, in their 

particular form, include tanh-functions [16]. Particular solutions of Eq. (1) have also been found in the 

form of tanh-function [7]. However, so far, by the moment there exists no general set of exact traveling 

waves for the hyperbolic equation of Allen-Cahn type (1). Therefore, the main purpose of the present 

work is to find a complete set of traveling waves as the set of exact analytical solutions of Eq. (1). This 

complete set will be found using the tanh-method [16,17,18], which nowadays represents one of the 

simplest and the most convenient ways in searching for solutions of traveling waves. As a final result, 

the complete set of solutions will be checked on the existence of tanh-functions in the obtained traveling 

waves. 

 

2.  The tanh-method and traveling-wave solutions 

One of the important solutions for the analysis of phase transformations is related to traveling waves 

[7,9,16-19]. To treat the non-linear PDEs, the traveling waves are obtained by the first integral method 

[19,20,21,22] (which can be considered as one of particular cases of the direct method [23], generalizing 

the use of equivalent methods in finding the exact solutions of PDE, which were reduced to ODE [24]), 

and also using G'/G-expansion method [25], the rank analytical technique [26,27], and the phase-plane 

analysis [28,29].  

In the present work, we use the tanh-method as a useful tool for the computation of the exact 

travelling waves by introducing a power series in tanh-function (function of hyperbolic tangent). The 

efficiency of the tanh-method has been illustrated in Refs. [16,17,18] by applying it for a variety of 

selected equations, such as nonlinear equations of the Fischer's type and generalized Korteveg-de-Vries-

equation (KdV-equation). Moreover, its modification, the tanh-coth-method [18,30], is used to derive 

the solitons and kink solutions for some of the well-known nonlinear parabolic partial differential 

equations (the Newell-Whitehead-, Fitz-Hugh-Nagumo-, and Burgers-Fisher-equation). The tanh-coth-

method extends a set of the possible solutions and provides abundant solitons and kink solutions in 

addition to the existing ones. As a result, the power of the tanh-method is confirmed as the most direct 

and effective algebraic methods [30,31] for finding the exact solutions of nonlinear differential 

equations. 
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Let’s consider spatially one-dimensional equation (1) for the atomic density amplitude 𝑢(𝑥, 𝑡), which 

is evolving in time 𝑡 along spatial coordinate 𝑥. Following Wazwaz [18], we introduce a new 

independent variable 

 

 ξ =
x−ct

δ
,  (5) 

 

which describes propagation of the amplitude with the velocity c and transforms the amplitude 𝑢(𝑥, 𝑡) →
𝑈(ξ). This transformation re-writes the derivatives as follows: 

 

 
∂

∂t
= −

c

δ

d

dξ
,

∂2

∂t2 =
∂

∂t
(−

c

δ

d

dξ
) =

c2

δ2

d2

dξ2,  (6) 

 

 
∂

∂x
=

1

δ

d

dξ
,

∂2

∂x2 =
1

δ2

d2

dξ2 ,
∂3

∂x3 =
1

δ3

d3

dξ3.  (7) 

 

Using (6) and (7), spatially one-dimensional equation (1) in the new variable looks like: 

 
c

δ

dU(ξ)

dξ
−  τ

c2

δ2

d2U(ξ)

dξ2 +
1

δ2

d2U(ξ)

dξ2 − U3(ξ) − KoU(ξ) + bU2(ξ) = 0.  (8) 

To solve (8), we shall apply now the tanh-method [16], introducing the finite expansion: 

 

 U(ξ) = S(Y) = ∑ akYk + ∑ bkY−kM
k=1

M
k=0 ,  (9) 

 

 𝑀 ∈ ℤ, Y = tanh(ξ).  (10) 

Using new variable (5), the solution (10) and derivatives, 

 
d

dξ
= (1 − Y2)

d

dY
 , 

 

d2

dξ2
= (1 − Y2) (−2Y

d

dY
+ (1 − Y2)

d2

dY2),  

one may find that Eq. (8) takes the following form 

 
𝑐

𝛿
(1 − 𝑌2)

𝑑𝑆

𝑑𝑌
+  

1

𝛿2
(1 − 𝜏𝑐2) [(1 − 𝑌2)(−2𝑌

𝑑𝑆

𝑑𝑌
+ (1 − 𝑌2)

𝑑2𝑆

𝑑𝑌2)] − 𝑆3 − 𝐾𝑜𝑆 + 𝑏𝑆2 = 0. (11) 

 

The parameter 𝑀 from Eq. (8) can be determined using the analysis of Wazwaz [16]. Indeed, 

balancing the linear terms of the highest order with the highest order nonlinear terms in Eq. (11) one can 

get 3𝑀 = 4 + 𝑀 − 2, therefore, 𝑀 = 1, so the expansion (9) becomes 

 

 S(Y) = a0 + a1Y, (12) 
 

with the following derivatives 

 

 S′(Y) = ∑ (akYk)′M
k=0 = a1, S′′(Y) = 0. (13) 

 

Now, opening the braces in Eq. (11), using Eqs. (12) and (13), we collect the coefficients of powers 

of Yn in the resulting equations as follows 
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(
2

δ2
(1 − τc2)a1 − a1

3) Y3 − (
c

δ
 a1 + 3a0a1

2) Y2 + (
2

δ2
(1 − τc2)a1 − 3a0

2a1 − Koa1 + 2ba0a1) Y 

 

 + (a1
c

δ
 − a0

3 − a0Ko + ba0
2) Y0 = 0. (14) 

 

Equation (14) has a solution if the braces ahead of Yk are placed to zero. Thus, the following system 

of equations for the parameters ak, k=0..M, c and δ is obtained: 
 

 Y3:
2

δ2
(1 − τc2)a1 − a1

3 = 0,  (15) 

 

 Y2: −
c

δ
a1 −  3a0a1

2 + ba1
2 = 0,  (16) 

 

 Y1 : −   
2

δ2
(1 − τc2)a1 − 3a0

2a1 − Koa1 + 2a0a1b = 0,  (17) 

 

 Y0: a1
c

δ
− a0

3 − a0Ko + ba0
2 = 0. (18) 

 

The system of equations (15)-(18) has a trivial solution a1=0 and  a0 = 𝑏 2⁄ (1 ± √1 − 4𝐾0 𝑏2⁄ ) 

with the arbitrary values of c and δ. In this case, the amplitude has constant profile 𝑢(𝑥, 𝑡) = a0. This 

homogeneous solution has no interest for us because we are looking for amplitude’s profiles of atomic 

density, which are moving through metastable/unstable homogeneous state (liquid phase). In the case 

a1 ≠ 0, equations (15)-(18) look like: 

 a1
2 =

2

δ2
(1 − τc2), (19) 

 

 a1 =
c

δ

b−3a0
, (20) 

 

 3a0
2 − 2a0b +  

2

δ2
(1 − τc2) + Ko  = 0, (21) 

 

 a0
3 − ba0

2 + a0Ko − a1
c

δ
= 0. (22) 

Determination of the parameters a0, a1, c and δ from Eqs. (19)-(22) leads us to the amplitude profiles 

of the form: 

 

 u(x, t) = a0 + a1 tanh [
x−ct

𝛿
]. (23) 

Concrete values for a0, a1, c and δ represent different types of solutions, that is shown in the next two 

sections. 
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3.  Set of solutions 

A complete set of solutions consists of 12 decisions for the parameters Ko and 𝑏, which are defined by 

Eqs. (2) and (3). This number of decisions follows from the degrees of Eqs. (19)-(22), where each (19) 

and (21) assume the  existence  of two roots (4 roots in total), multiplied by 3 decisions from the cubic 

equation (22). These 12 decisions can be divided into three sets, every one of which contains 4 similar 

by notation type of solution. All the  coefficients from Eq. (23) are obtained for the following far field 

boundary conditions, ξ → ±∞: 𝑢 ≡ 𝑐𝑜𝑛𝑠𝑡, namely, for 𝑢 = 0 or 𝑢 = ±1. 

3.1.  Solutions 1-4 

The first set of solutions can be recognized by the signs of the parameters a1, c. As a result, solutions 1-

4 are presented in Table 1. 

 

Table 1. First set of solutions: solutions 1-4. 

 

Values 

 

Solutions 1 and 2 

 

Solutions 3 and 4 

𝑎0 
1

2
𝑏 

1

2
𝑏 

𝑎1 ±
1

2
√𝑏2 − 4𝐾0 

1

2
√𝑏2 − 4𝐾0 

𝛿 
4

√2𝑏2 − 8𝐾0 + 𝑏4𝜏 − 4𝑏2𝜏𝐾0

 −
4

√2𝑏2 − 8𝐾0 + 𝑏4𝜏 − 4𝑏2𝜏𝐾0

 

с 
𝑏√𝑏2 − 4𝐾0

√2𝑏2 − 8𝐾0 + 𝑏4𝜏 − 4𝑏2𝜏𝐾0

 ±
𝑏√𝑏2 − 4𝐾0

√2𝑏2 − 8𝐾0 + 𝑏4𝜏 − 4𝑏2𝜏𝐾0

 

 

  
(a)   

 

  
(b) 

Figure 1. Smooth and continuous 𝜑 − profiles calculated with the usage of Solutions 3 and 4 from 

Table 1. Calculation were developed for fixed τ = 0.5 and for the values of 𝑎0, 𝑎1 and 𝛿 given by 

Ko = 1 and under the condition of 𝑏2 ≥ 4𝐾0 as from Eq. (2). (a) 𝜑 − profile moves in direction of 

the 𝑥 –axis with the constant negative velocity c. (b) 𝜑 − profile moves in direction of the 𝑥 –axis 

with the constant positive velocity c. 
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With 𝑏 = 0 and 𝐾0 = −1, table 1 shows that a0 = 0, a1 = ±1, δ = ±√2 and с = 0. In this particular 

case, Eq. (23) predicts stationary profiles: 

 

 𝑢(𝑥, 𝑡) = ± tanh (∓
𝑥

√2
).  (24) 

 

This profile is consistent with the steady solution of hyperbolic Allen-Cahn equation (τ ≠ 0) and 

parabolic Allen-Cahn equation (τ = 0), which are obtained from (1) for the above accepted parameters 

𝑏 = 0 and Ko = −1. 
 

3.2.  Solutions 5-8 

The second group of solution consist of solutions 5-8. It has the similar structure. In order to simplify 

the representation, we shall introduce the following notations for this set of solutions: 

 

𝐴5−8 = [−(10𝑏2 + 6𝑏√𝑏2 − 4𝐾0 + 162𝜏𝐾0
2 − 36𝐾0 − 72𝑏2𝜏𝐾0 + 8𝑏4𝜏) ∙

(8𝑏2𝐾0 − 𝑏4 − 6𝑏𝐾0√𝑏2 − 4𝐾0 + 𝑏3√𝑏2 − 4𝐾0 − 18𝐾0
2)]

1
2⁄

, (25) 

 

𝐵5−8 = 5𝑏2 + 3𝑏√𝑏2 − 4𝐾0 + 81𝜏𝐾0
2 − 18𝐾0 − 36𝑏2𝜏𝐾0 + 4𝑏4𝜏, (26) 

 

   

 𝐺5−8 = √2𝑏2 + 2𝑏√𝑏2 − 4𝐾0 − 4𝐾0.   (27) 

 

Now using the parameters (25) - (27), we rewrite Solutions 5-8 in new designations: 

 

𝑎0 =
1

4
𝑏 +

1

4
√𝑏2 − 4𝐾0, 𝑎1 =

1

4
𝐺5−8, 𝛿 =

2𝐴5−8

𝐵5−8𝐾0
, 

 𝑐 = −
1

4
(−

1

2
𝑏 +

3

2
√𝑏2 − 4𝐾0) 𝐺5−8

𝐴5−8

𝐵5−8𝐾0
, (28) 

 

𝑎0 =
1

4
𝑏 +

1

4
√𝑏2 − 4𝐾0, 𝑎1 =

1

4
𝐺5−8, 𝛿 = −

2𝐴5−8

𝐵5−8𝐾0
, 

 𝑐 =
1

4
(−

1

2
𝑏 +

3

2
√𝑏2 − 4𝐾0) 𝐺5−8

𝐴5−8

𝐵5−8𝐾0
, (29) 

 

𝑎0 =
1

4
𝑏 +

1

4
√𝑏2 − 4𝐾0, 𝑎1 = −

1

4
𝐺5−8, 𝛿 =

2𝐴5−8

𝐵5−8𝐾0
, 

 𝑐 =
1

4
(−

1

2
𝑏 +

3

2
√𝑏2 − 4𝐾0) 𝐺5−8

𝐴5−8

𝐵5−8𝐾0
, (30) 

 

𝑎0 =
1

4
𝑏 +

1

4
√𝑏2 − 4𝐾0, 𝑎1 = −

1

4
𝐺5−8, 𝛿 = −

2𝐴5−8

𝐵5−8𝐾0
, 

                  𝑐 = −
1

4
(−

1

2
𝑏 +

3

2
√𝑏2 − 4𝐾0) 𝐺5−8

𝐴5−8

𝐵5−8𝐾0
.                                        (31) 
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3.3.  Solutions 9-12 

The third group consists of Solutions 9-12. It has the similar structure to the first group once again and 

is also similar 

to the previous group of Solutions 5-8. Introducing the parameters, 

 

𝐴9−12 = [−(−10𝑏2 + 6𝑏√𝑏2 − 4𝐾0 − 162𝜏𝐾0
2 + 36𝐾0 + 72𝑏2𝜏𝐾0 − 8𝑏4𝜏) ∙ (−8𝑏2𝐾0 + 𝑏4 −

                                               6𝑏𝐾0√𝑏2 − 4𝐾0 + 𝑏3√𝑏2 − 4𝐾0 + 18𝐾0
2)]

1
2⁄

, (32) 

 

 𝐵9−12 = −5𝑏2 + 3𝑏√𝑏2 − 4𝐾0 − 81𝜏𝐾0
2 + 18𝐾0 + 36𝑏2𝜏𝐾0 − 4𝑏4𝜏, (33) 

 

 𝐺9−12 = √2𝑏2 − 2𝑏√𝑏2 − 4𝐾0 − 4𝐾0,  (34) 

 

we, finally, rewrite parameters for a0, a1, c and δ for Solution 9-12 in the following form 

 

𝑎0 =
1

4
𝑏 −

1

4
√𝑏2 − 4𝐾0,           𝑎1 =

1

4
𝐺9−12, 𝛿 = −

2𝐴9−12

𝐵𝐾0
, 

 𝑐 =
1

4
(−

1

2
𝑏 −

3

2
√𝑏2 − 4𝐾0) 𝐺9−12

𝐴9−12

𝐵𝐾0
,  (35) 

 

𝑎0 =
1

4
𝑏 −

1

4
√𝑏2 − 4𝐾0,       𝑎1 =

1

4
𝐺9−12, 𝛿 =

2𝐴9−12

𝐵𝐾0
, 

                                              𝑐 = −
1

4
(−

1

2
𝑏 −

3

2
√𝑏2 − 4𝐾0) 𝐺9−12

𝐴9−12

𝐵𝐾0
, (36) 

 

𝑎0 =
1

4
𝑏 −

1

4
√𝑏2 − 4𝐾0,        𝑎1 = −

1

4
𝐺9−12, 𝛿 = −

2𝐴9−12

𝐵𝐾0
, 

     𝑐 = −
1

4
(−

1

2
𝑏 −

3

2
√𝑏2 − 4𝐾0) 𝐺9−12

𝐴9−12

𝐵𝐾0
,  (37) 

 

𝑎0 =
1

4
𝑏 −

1

4
√𝑏2 − 4𝐾0, 𝑎1 = −

1

4
𝐺9−12, 𝛿 =

2𝐴9−12

𝐵𝐾0
, 

      𝑐 =
1

4
(−

1

2
𝑏 −

3

2
√𝑏2 − 4𝐾0) 𝐺9−12

𝐴9−12

𝐵𝐾0
. (38) 

 

4.  Particular solutions 

For the amplitude’s equation (8) the whole set of 12 solutions of the form of Eq. (23) is presented by 

the coefficients summarized in Table 1, Eqs. (28) -(31) and Eqs. (35) -(38). Now, we compare special 

and particular cases of these solutions with corresponding results, which were obtained earlier. 

Using the first integral method [19], traveling wave solutions have been obtained for the hyperbolic 

Allen-Cahn equation [20]. This equation is consistent with Eq. (1), if 𝑏 = 0 and Ko = −1. Indeed, if we 

substitute these values for 𝑏 and Ko into solutions (28)-(31), then solutions of the form (23) corresponds 

to those ones obtained in [20]. The graphical representation for this particular case is shown in Fig. 1, 

which gives a view for the atomic density profile, that invades  the homogeneous phase with positive 

and negative values of 𝑐. Another pair of solutions could be obtained for a0 = a1 = ±0.5.  Thus, in 

general, we have obtained 4 bounded solutions, which correspond to 4 bounded solutions of Ref. [20]. 

It should be noticed, that in [20] another 4 unbounded solutions were obtained. These solutions were 

extracted by us in [20] from the general set of solutions due to its physical and mathematical insolvency, 

namely, due to the absence of the physical sence and the violation of the mathematical problem 
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statement. In the current work we do not obtain the unbounded solutions since tanh-method build (9)-

(10) on the bounded set a priori. Therefore, solution (23) is always bounded.  

With the zero relaxation time, namely  τ = 0, hyperbolic equation (1) transforms into parabolic 

partial differential type whose traveling wave solution has been previously found by Wazwaz [18]. 

Indeed, as it follows from our solutions (35)-(38), if we use τ = 0  and take into account (32)-(34), 

solutions of [18] are covered for the extended Allen-Cahn equation.  

In general, we have obtained traveling wave solutions represented by hyperbolic tanh-functions (23) 

that confirms the correctness of the particular solutions for the dynamical problem of fast diffuse 

interfaces [32-33].  

 

5.  Conclusions 

We considered the atomic density amplitudes which represented by an extended hyperbolic Allen-

Cahn equation (1). Using the tanh-method [16-18,30,31], we obtained traveling wave solutions for Eq. 

(1) as kink-profiles (step-profiles), which invade metastable or unstable homogeneous states (liquid 

phase). The kink-profiles are described by tanh-functions (23), which in its order confirms the 

correctness of the particular solutions [32,33], which  were chosen for equations from the fields of rapid 

solidification and fast transformations. We have shown, that the presently obtained solutions indeed 

include as particular case the previously known sets of traveling waves, which have been found for (i) 

the extended parabolic Allen-Cahn equation [16] and (ii) the hyperbolic Allen-Cahn equation with a 

standard free energy density describing only the transitions from the unstable state [20].   
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