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Abstract. This paper deals with the problem of how to control differential driven mobile robot 

with simple control law. When mobile robot moves from one position to another to achieve a 

position destination, it always produce some errors. Therefore, a mobile robot requires a 

certain control law to drive the robot’s movement to the position destination with a smallest 

possible error. In this paper, in order to reduce position error, a linear feedback control is 

proposed with pole placement approach to regulate the polynoms desired. The presented work 

leads to an improved understanding of differential-drive mobile robot (DDMR)-based 

kinematics equation, which will assist to design of suitable controllers for DDMR movement. 

The result show by using the linier feedback control method with pole placement approach the 

position error is reduced and fast convergence is achieved. 

1. Introduction 

According to various studies that have been conducted, mobile robot control system can be classified 

into three categories. The first category is namely the sensor-based control-based approach. Such 

control system is emphasized on how to model the motion of a robot in a dynamic environment [1]. 

The control process to produce estimation and predictions of the mobile robot movement is based on 

information from sensor detection [2]. The intelligent control scheme is an approach that is most 

widely used [3][4][5]. However, its results produce sub-optimal response, because the motion is only 

around the trajectory detection [5]. The second category is the approach of decomposed execution 

process using a path planning [6][7]. The control system regulates the movement of the mobile robot 

through the planned path, therefore it can move according to the target that has been set up. The 

environmental mapping is created for producing collision-free path. Such scheme of control is based 

on minimal distance, energy and time. The third category presenting the optimization algorithm is 

developed for controlling the mobile robot with accurate trajectory. The controller design is based on 

mathematical model of mobile robot. The approach is for tracking the mobile robot errors between 

reference and actual trajectory [8][9]. 

However, the whole categories of the control system only operate when the condition of linear 

velocity is not zero. Therefore, a mobile robot is difficult to control, especially in the case of following 

the reference of trajectory in a short time with minimal errors. Nonlinear control approaches have been 

employed to solve this problem [10][11][12][13]. Although the regulation problem is solved to track 

the mobile robot move to desired trajectory, but it found to yield slow asymptotic convergence [13]. In 

order to obtain faster convergence, an alternative approach must be proposed. This paper proposes the 

linier feedback control law to overcome such limitation with pole placement approach to regulate the 
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polynom desired. By using the scheme, the controller performance can be regulated and fast 

asymptotic convergence is achieved. 

 

2. Differential Drive Mobile Robot Kinematic Model 

The differential-drive mobile robot (DDMR) is a class of computer-controlled vehicles whose motion 

can be described or transformed into the following model with constrained movement in a plane. 

Figure 1 describes the DDMR on 2D-cartesian plane, it means the mobile robot move only in the x y 

axis, while the contour and elevation of the z-axis is ignored [13]. 

 

 
Figure 1. DDMR on 2D cartesian plane  

 

From Figure 1, the representation of  𝑥̇𝑄 , 𝑦̇𝑄  are x, y coordinate relation to center of the robot Q, 𝑣𝑄  

is a linier velocity, 𝑣𝐿 are linier velocity of left wheels and  𝑣𝑅 linier velocity of right wheel, 𝑟 is a 

radius of wheel, 2𝑏 is a distance from right to left wheel, 𝑄 is a center point of the robot, 𝐺 is a center 

of gravitation and 𝑏 is a distance between 2 wheels with G. By ignoring the analysis of the castor-free, 

the configuration of the mobile robot can be described into three general variables 𝑞(𝑡) to describe the 

position of the robot  and the control input 𝑢(𝑡). It can be defined in matrix: 

𝑞(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡))𝑇, and 𝑢(𝑡) = (𝜃̇𝑅(𝑡),  𝜃̇𝐿(𝑡))
𝑇
      (1) 

 

The angular velocity equations for the right wheel and left wheel  such as, 

 

𝜃̇𝑅(𝑡)  =  
1

2𝜋𝑟
 . 𝑣𝑅(𝑡) ; 𝜃̇𝐿(𝑡) =  

1

2𝜋𝑟
 . 𝑣𝐿(𝑡)                                                              (2) 

𝑣𝑅(𝑡) = 𝑣(𝑡) + 𝑏𝜃̇(𝑡) ; 𝑣𝐿(𝑡) = 𝑣(𝑡) − 𝑏𝜃̇(𝑡)         (3) 

 

From equations (2) and (3) above, a linear velocity equation is 𝑣𝑄(𝑡) and an angular velocity 

equation is ̇𝜃̇(𝑡) as follow,  

 

𝑣𝑄(𝑡) =
1

2
(𝑣𝑅(𝑡) + 𝑣𝐿(𝑡)); 𝜃̇(𝑡) = 

𝑣𝑅(𝑡)−𝑣𝐿(𝑡)

2𝑏
      (4) 

 

However, the DDMR has a limitation in terms of movement, due to the non-holonomik constraint. 

The constrained are obtained by two main assumptions. The first assumption no lateral slip motion. 

It’s mean the robot can move only in a curved motion (forward and backward) but not sideward. The 

velocity equation at the midpoint of the both wheels (𝐺) is obtained by using Figure 2(b), the equation 

is described as follows,  
 

𝑣(𝑡) =  𝑥̇(𝑡) cos𝜃(𝑡) + 𝑦̇(𝑡) sin 𝜃(𝑡)          (5) 
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In the robot frame, this condition means the velocity of the wheel in the centre point  𝐺 is zero 

along the lateral axis and it’s only move along 𝑥 axis and 𝑦 axis [7]. Therefore, the velocity equation 

gives,  
 

𝑥̇(𝑡) sin 𝜃(𝑡) − 𝑦̇(𝑡) cos 𝜃(𝑡) = 0               (6) 

 

 
Figure 2. No lateral slip 

 

The second assumption is the pure rolling constraint, due to the wheels do not slip on the floor and 

has limitations of pure rolling (Figure 3). The velocities of the contact points in the robot frame are 

related to the wheel velocities for the right wheel and left wheel gives, 

  

𝑣𝑅(𝑡) = 𝑟𝜃̇𝑅(𝑡)  and 𝑣𝐿(𝑡) = 𝑟𝜃̇𝐿(𝑡)        (7) 

 

  
Figure 3. Pure rolling motion constraint 

 

By looking at the starting position of the wheel to the Cartesian field 𝑥𝑦 can be obtained the 

equation of position wheeled robot, 𝑥(𝑡) =  𝑣(𝑡) sin 𝜃(𝑡), 𝑦(𝑡) = 𝑣(𝑡) cos𝜃(𝑡), and 𝜃(𝑡) = 𝑣𝜃(𝑡). Thus, 

the transformation matrix equations from the initial position can be defined as, 

 

𝑇𝑁𝐻(𝑞) =

[
 
 
 
𝑟

2
cos𝜃 (𝑡)

𝑟

2
sin 𝜃 (𝑡)

𝑟

2
cos 𝜃(𝑡)

𝑟

2
sin 𝜃 (𝑡)

𝑟

2𝑏
−

𝑟

2𝑏 ]
 
 
 

                 (8) 

 

Furthermore, the angular velocity 𝑢(𝑡) as input to the robot  have three parameters such as, 𝑢1(𝑡) =

𝜃̇𝑅(𝑡),  𝑢2(𝑡) = 𝜃̇𝐿(𝑡), and 𝜃̇(𝑡) = 𝜔(𝑡).  From equation (8) and three parameters of input equation, the 

model of DDMR kinematic equation is, 𝑞̇(𝑡) = 𝑇𝑁𝐻(𝑞) 𝑢(𝑡) or,  
 

[

𝑥̇(𝑡)
𝑦̇(𝑡)

𝜃̇(𝑡)

] = [
cos𝜃(𝑡)
sin 𝜃(𝑡)

0

0
0
1
] [

𝑣(𝑡)
𝜔(𝑡)

]               (9) 
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3. The Error Model of DDMR Movement 

The error model of DDMR is obtained by reducing the reference position 𝑞𝑟(𝑡) =  (𝑥𝑟(𝑡), 𝑦𝑟(𝑡), 𝜃𝑟(𝑡))
𝑇 

with the actual position of the robot  𝑞𝑐(𝑡) =  (𝑥𝑐(𝑡), 𝑦𝑐(𝑡), 𝜃𝑐(𝑡))
𝑇.  The visualisation of DDMR 

movement is presented in Figure 4. Thus, the error of mobile robot movement is represented by 

𝑞𝑒(𝑡) =  (𝑒1(𝑡), 𝑒2(𝑡), 𝑒3(𝑡))
𝑇. 𝑞𝑒(𝑡 ) is the transformation result between the reference position 𝑞𝑟(𝑡)  in 

a local coordinate system with the previous position 𝑞𝑐(𝑡) and 𝑋 axis which is the direction toward the 

robot is  𝜃𝑐(𝑡) or  𝑞𝑒(𝑡) = 𝑇𝑒(𝑞𝑟(𝑡) − 𝑞𝑐(𝑡)). It can be realized in equation (10) as follows: 

 

[

𝑒1(𝑡)
𝑒2(𝑡)
𝑒3(𝑡)

] = [
cos𝜃𝑐(𝑡)

−𝑠𝑖𝑛 𝜃𝑐(𝑡)
0

sin 𝜃𝑐(𝑡)
cos 𝜃𝑐(𝑡)

0

0
0
1
] [

𝑥𝑟(𝑡) − 𝑥𝑐(𝑡)
𝑦𝑟(𝑡) − 𝑦𝑐(𝑡)
𝜃𝑟(𝑡) − 𝜃𝑐(𝑡)

]     (10) 

 

By lowering the equation (10) and involving the equations that exist in the equation of non-

holonomic DDMR constraints, the error equation is obtained as equation (11) below: 
 

[

𝑒̇1(𝑡)
𝑒̇2(𝑡)
𝑒̇3(𝑡)

] = [
cos 𝑒3(𝑡) 0
sin 𝑒3(𝑡) 0

0 0    1

] [
𝑣𝑟(𝑡)
𝜔𝑟(𝑡)

] + [
−1 𝑒2(𝑡)

0 −𝑒1(𝑡)

0   −1

] [
𝑣𝑐(𝑡)
𝜔𝑐(𝑡)

]    (11) 

 
Figure 4. Transformation of error movement 

 

From equation (11), 𝑣𝑟(𝑡) as a reference linear velocity, 𝜔𝑟(𝑡) as a reference angular velocity, 

𝑣𝑐(𝑡) as an actual linear velocity, and 𝜔𝑐(𝑡) as an actual angular velocity. In this model the combination 

between feed forward control and linier feedback control based on pole placement approach is 

proposed, therefore a new input is  created below, 
 

𝑣𝑐(𝑡) =  𝑣𝑓𝑓(𝑡) − 𝑣1(𝑡)  

𝑣𝑐(𝑡) =  𝑣𝑟(𝑡) cos 𝑒3(𝑡) − 𝑣1(𝑡)        (12) 

𝜔𝑐(𝑡) =  𝜔𝑓𝑓(𝑡) − 𝑣2(𝑡)  

𝜔𝑐(𝑡) =  𝜔𝑟(𝑡) − 𝑣2(𝑡)        (13) 

 

By substituting equation (12) and (13) into equation (11) nonlinear equation of error control 

velocity is obtained, 
  

[

𝑒̇1(𝑡)
𝑒̇2(𝑡)
𝑒̇3(𝑡)

] = [
0 𝜔𝑐(𝑡) 0

−𝜔𝑐(𝑡) 0 0
0 0 0

] [

𝑒1(𝑡)

𝑒2(𝑡)

𝑒3(𝑡)
] + [

0
sin 𝑒3(𝑡)

0
] 𝑣𝑟(𝑡) + [

1 0
0 0
0 1

] [
𝑣1(𝑡)

𝑣2(𝑡)
]  (14) 

 

By using the linearization approach around its operating point (OP : 𝑒1 = 𝑒2 = 𝑒3 = 0, 𝑣1 = 𝑣2 = 0). 

Thus, the linear model of error in equation (14) become, 
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∆𝑒̇(𝑡) = [
0 𝜔𝑟(𝑡) 0

−𝜔𝑟(𝑡) 0 𝑣𝑟(𝑡)
0 0 0

] . ∆𝑒(𝑡) + [
1 0
0 0
0 1

] . ∆𝑣(𝑡)     (15) 

 

4. Control System Design 

In this research, the controller design has three states, namely 𝑥(𝑡), 𝑦(𝑡), and 𝜃(𝑡) and two inputs, 

namely 𝑣(𝑡), and 𝜔(𝑡). The general equation linear state space controller. 𝑣(𝑡) = 𝐾. 𝑒(𝑡), therefore the 

feedback control law becomes 

 

[
𝑣1(𝑡)

𝑣2(𝑡)
] = [

−𝑘1 0 0
0 −𝑠𝑖𝑔𝑛 (𝑣𝑟(𝑡))𝑘2 −𝑘3

] [

𝑒1(𝑡)
𝑒2(𝑡)
𝑒3(𝑡)

]            (16) 

 

From equation (16) a linear velocity of robot 𝑣(𝑡) replaced by 𝑣1(𝑡), an angular velocity of robot 

𝜔(𝑡) replaced by 𝑣2(𝑡), some values of 𝑘1, 𝑘2,  and 𝑘3 are a gain in the controller. The diagram block 

of the control system design can be seen in Figure 4. Moreover, the value of k control law 

corresponding will be determined. This problem is solved by optimizing some function value. In this 

research, the determination of the k value is determined by comparing the characteristics of the real 

polynoms and desired polynoms of control system characteristics [5]. These polynomials take the 

following form as follow, 
  

(𝑠 + 2𝜁𝜔𝑛)(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2) and  𝑠3 + (4𝜁𝜔𝑛)𝑠2 + (4 𝜁2𝜔𝑛

2 + 𝜔𝑛
2
)𝑠 + 2𝜁𝜔𝑛

3    (17) 

 

Where, two parameters are selected such as, the damping coefficient 𝜁 ∈ (0,1) and the natural 

frequency 𝜔𝑛 > 0. At the additional pole 𝑠 =  −2𝜁𝜔𝑛 which is useful to increases the rise time and to 

reduce the overshoot system. The polynomial characteristic of the closed loop control law in equation 

(15) with input to the state space controller in equation (16) are the two important parameters design. 

All equations from (8) to (16) can be visualized as a block diagram with linier feedback control law as 

shown in Figure 5. 
 

 
Figure 5.  Block diagram control law of DDMR system 

 

5. Simulation Results 

The purpose of this research is to find the parameters of error value including x(t), y(t) and θ(t) based 

on polynomials approach to produce good control performance such as, rise time, and steady state 

error parameters. Some simulations are conducted to show the DDMR performance in terms of error 

and delta error values by using the proposed control law. The starting position of the robot at 

coordinates is set at (0; 0; 0.78) and initial linear velocity is set at 0,01 m/s and angular velocity is set 

at 0,02 rad/s. Therefore, it can be calculated to obtain the value of the average error and time to steady 
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state. Initial performance of controller are the damping factor and natural frequency.  The damping 

factor is set variable from 0,2 < 𝜁 < 0.8  and natural frequency are set at 𝜔𝑛 = 5 , 𝜔𝑛 = 2, and 𝜔𝑛 = 1 

respectivelly. The error position of DDMR based on selected parameter as shown in Figure 6. 

  

 
Figure 6. The DDMR error position control  

 

The summary all experiments for DDMR movement  in simulation process is described in Table 1 

and Table 2.  

 

Table 1. (a) Comparison data of average error value with 0,2 < 𝜁 < 0.8 and 𝜔𝑛 is fixed  

(b) Comparison data of  the average interval time with 0,2 < 𝜁 < 0.8 𝜔𝑛 is fixed 

  (a)     (b) 

  
        

In table 1(a) and 1(b), it can be seen the value of the error and the smallest travel time obtained by 

setting the value of  ζ = 0.6. In Table 2, it compared with the test data in value 𝜁 = 0.6,  𝜔𝑛 = 2,  and 

𝑔 = 1 before, the delta error value and the smallest interval time are obtained by assigning a value 

 𝜔𝑛 = 2. 
 

Table 2. Comparison data of  the average error value and time interval  with  

𝜔𝑛 = 5 , 𝜔𝑛 = 2, and 𝜔𝑛 = 1 and 𝜁 is fixed 

 
 

6. Conclusion 

From the experimental results, it is concluded that the method of linearization error with feed-forward 

and feedback control law with poles placement approach produces small value of the average error 



7

1234567890

IAES International Conference on Electrical Engineering, Computer Science and Informatics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 190 (2017) 012001 doi:10.1088/1757-899X/190/1/0120011234567890

IAES International Conference on Electrical Engineering, Computer Science and Informatics  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 190 (2017) 012001 doi:10.1088/1757-899X/190/1/012001

 

 

 

 

 

 

 

position, and it achieved in a short time to steady state condition. From Seven values of ζ and two 

values of  𝜔𝑛, are selected  𝜁 = 0.6,  𝜔𝑛 = 2,  and 𝑔 = 1, due to by using the values it can be obtained 

the average value of delta error is 4x10-4 m on x position; the average value of delta error is 10-5 m on 

y position and the average value of delta error of direction side of the robot is -4x10-4 rad with an 

average time interval is 2.5x10-2 s. By regulating performance of controller based on pole placement 

approach, the small error, faster time to steady state and small overshoot is achieved.  
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