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Abstract. In this study, we have systematically investigated the sensitivity of surface plasmon 
resonance bimetallic silver-gold alloys by means of metallic nanoparticle simulation, MNPBEM 
with respect to the diameter, mole fraction, and refractive index medium variation. The 
sensitivity of surface plasmon resonance was obtained from a fitting linear between the value of 
the peak position LSPR spectra and the refractive index medium. Interestingly, it was found the 
sensitivity of surface plasmon resonance increased as the diameter increased for a diameter less 
than 40 nm, whereas the sensitivity of surface plasmon resonance exhibited the fluctuation values 
for diameter above 40 nm. The highest value of the sensitivity occurred at the silver mole fraction 
at x = 0.6 rather than at x = 1.0 (pure silver particle). This result also showed the sensitivity of 
surface plasmon resonance pure silver particle (x = 1) was greater than gold particle (x = 0). The 
sensitivity of surface plasmon resonance was not only affected by the diameter but also 

influenced by the mole fraction. 

1. Introduction 
Metallic and bimetallic noble nanoparticle have been attracted much attention due to their potential 
application for sensing such as biosensor, biochemical sensing, biomedical application, etc. [1, 2]. They 
produce unique optical properties from the interaction between free electron conduction in noble 
metallic with the electromagnetic field that known as localized surface plasmon resonance (LSPR). 
Furthermore, LSPR spectra depends on the size, shape, medium, and configuration [3, 4]. Understanding 
LSPR spectra includes shifting of the peak position and dielectric sensitivity is very important for 
designing sensor device based on surface plasmon behavior [5]. Several observations have been reported 
for the peak LSPR shifting and the sensitivity of surface plasmon resonance, both experimental [6, 7] 
and simulation [8-10]. However, few observations reported about LSPR shifting such as amplitude and 
peak position spectra and the sensitivity of surface plasmon resonance bimetallic silver-gold alloy as the 
diameter, mole fraction, and medium variation. 

 In this study, we calculated the sensitivity of surface plasmon resonance bimetallic silver-gold alloys 
with the variation of the silver mole fraction, diameter, and the refractive index medium. We produced 
LSPR spectra bimetallic silver-gold alloy using a public metallic nanoparticle simulation based on 
boundary element method. We have observed two behaviors of the LSPR spectra of the silver-gold 
alloys such as amplitude and the peak position. The LSPR spectra showed shifting to a higher 
wavelength (red-shift) as the diameter of alloys increased. Interestingly, as the mole fraction of silver 
increased, the amplitude increased and the peak position shifted to a smaller wavelength (blue-shift). 
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Then, we calculated the sensitivity of surface plasmon resonance based on the peak position of the LSPR 
spectra with respect to the refractive index medium and diameter variation. 

2. Simulation procedure 
We have systematically performed the sensitivity of surface plasmon resonance bimetallic silver-gold 
alloys by means of a public metallic nanoparticle simulation, MNPBEM based on boundary element 
method [11]. Bimetallica silver-gold alloys (AgxAu1-x) was modeled as a spherical particle with the 
diameter variation from 10 nm to 100 nm. The mole fraction x was varied from 0 to 1 with 0.2 increment. 
We have also prepared the variation of the refractive index medium to observe the sensitivity of surface 
plasmon resonance. In this study, we varied the refractive index medium by mixture of water and 
glycerol concentration based on Lorentz-Lorentz approximation [12, 13], n = 1.3334 (100% water pure), 
n = 1.3605 (80% water and 20% glycerol), n = 1.3881 (60% water and 40% glycerol), n =  1.4164 (40% 
water and 60% glycerol), and n = 1.4452 (20% water and 80% glycerol). The dielectric bimetallic silver-
gold alloys were calculated based on the dielectric silver and gold combination with respect to the mole 
fraction variation [9, 14]. This simulation produced the LSPR spectra such as extinction, absorption, 
and scattering curve with respect to the wavelength. We only focused on the extinction curve as 
representative of LSPR behavior in this study. 

3. Results and discussion 
Figure 1 shows the extinction curve of the silver-gold alloys for the diameter and the mole fraction 
variation under the refractive index medium water n = 1.3334. For understanding, we showed the 
extinction curve for small (D = 20 nm), intermediate (D = 60 nm), and large diameter (D = 100 nm). 
Interestingly, the peak position of the extinction curve shifted to a higher wavelength (red-shift) as the 
diameter of alloys increased and also occurred in the visible light range. The red-shift phenomenon 
originated from the bimetallic particle interacted with the electromagnetic field that depended on the 
material, size, shape, and local dielectric properties. The scattering exhibited to be more dominant than 
the absorption as the particle size increased and the peak position of the LSPR spectra will shift to a 
higher wavelength [15, 4]. Further, we found two behaviors of the extinction curve such as amplitude 
and the peak position. As the silver mole fraction increased, we observed the amplitude also increased 
and the peak position shifted to a lower wavelength (blue-shift). Similar observations have been reported 
[16, 8].  

Interestingly, the extinction curve bimetallic silver-gold alloys exhibited different behavior 
compared to the extinction curve from pure silver and pure gold particle. Introducing a hybrid surface 
plasmon resonance from bimetallic particle that originated from d-band and conduction band. We 
observed, for small and intermediate diameter, the amplitude of the extinction curve slowly increased 
until the silver mole fraction at x = 0.6, whereas greater than x = 0.6, the amplitude clearly changed. For 
the case the mole fraction x = 0 and x = 1 related to LSPR spectra pure gold and silver particles, 
respectively. 
 

 

Figure 1. The extinction curve bimetallic silver-gold alloys for the mole fraction variation from x = 

0 to x = 1 (a) D = 20 nm, (b) D = 60 nm, and (c) D = 100 nm. 
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Figure 2. The peak position with respect to the refractive index medium variation and the 
mole fraction (a) D = 20 nm, (b) D = 60 nm, and (c) 100 nm as represented in dot symbol 

and the dot-line represents the linear fitting. (d) The sensitivity of surface plasmon 
resonance relates to the diameter bimetallic silver-gold alloys and the mole fraction 

 
Next, we have also produced the extinction curve of the silver-gold alloys corresponded to the 

refractive index medium variation. Figure 2 exhibits the peak position of the extinction curve for small 
(D = 20 nm), intermediate (D = 60 nm), and large diameter (D = 100 nm) as the mole fraction and the 
refractive index medium variation. According the figure, we have found that the peak position still 
occurred in the visible light range as changing the refractive index medium. The peak position also 
shifted to red-shift as the refractive index medium increased and blue-shift as the silver mole fraction 
increased. The values of the peak position from the extinction curve exhibited a linear-like peak position. 
For small diameter (D = 20 nm), the peak position slowly decreased until the silver mole fraction at x = 
0.4 and relatively same value for x greater than 0.4.  We have observed there was a large difference 
value between x = 0.4 and 0.6, such as a transition. In contrast to intermediate and large diameter, the 
value of peak position decreased as the silver mole fraction increased. Based on Kuzma’s work, shifting 
of the peak position in bimetallic the silver-gold alloys originated from the dipole term rather than 
interparticle coupling [8]. 

Furthermore, we calculated the sensitivity of surface plasmon resonance bimetallic silver-gold alloys 
using a linear fitting based on the peak position and the refractive index medium relation. The fitting 
results are shown in figure 2a for D = 20 nm, figure 2b for D = 60 nm, and figure 2c for D = 100 nm 
(denoted in dotted lines). The slope value of the linear fitting was a value of the sensitivity of surface 
plasmon resonance bimetallic silver-gold alloys [5, 17]. Figure 2d shows the sensitivity of surface 
plasmon resonance corresponded to the diameter and the mole fraction variation. We observed, for 
diameter less than D = 40 nm the sensitivity tended to increase as the diameter increased. Above the 
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diameter 40 nm, the sensitivity exhibited the fluctuation value that depended on the changing of the 
mole fraction.  Interestingly, the highest sensitivity of bimetallic silver-gold alloys occurred in the silver 
mole fraction at x = 0.6 rather than x = 1.0 at the diameter D = 40 nm. This figure also shows the 
sensitivity of surface plasmon resonance the silver particle (x = 1.0) was higher than gold particle (x = 
0) for all range the diameter. In other words, the sensitivity of surface plasmon resonance the bimetallic 
silver-gold alloys exhibited to be more stable at the mole fraction x = 0.6 at small diameter. From this 
result, we suggested to consider the mole fraction when preparing the bimetallic nanoparticle.  

4. Conclusions 
In conclusion, we have calculated the sensitivity of surface plasmon resonance bimetallic silver-gold 
alloy with respect to the diameter, mole fraction, and refractive index medium variation. The value of 
the sensitivity was obtained by a linear fitting based on the peak position and the refractive index 
medium relation. The sensitivity tended to increase as the diameter increase to 40 nm. Above the 
diameter 40 nm the sensitivity showed the fluctuation values depended on the changing of the mole 
fraction. The highest sensitivity occurred in the mole fraction of silver at x = 0.6 at the diameter 40 nm. 
Beside the diameter, the mole fraction should be considered for observing the LSPR spectra in bimetallic 
nanoparticle. 
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