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Abstract. Global Positioning System (GPS) has become part of many applications in life. In 

mountainous terrains and around buildings, GPS reception is compromised. In dense urban 

canyons, signals bounce off the buildings creating multipath reception and provide erroneous 

measurements. To overcome GPS bandwidth and signal fading problems, Navigation solutions 

are built on GPS measurements fused with inertial sensors to provide dead reckoning (DR) 

based position solution. Solution for land vehicle Navigation System using GPS, inertial sensor 

and odometer is presented. The sensors fusion is performed based on conventional, sequential 

(SKF) and square root Kalman (SRKF) filters. SRKF based on Cheolesky factorization for 

covariance matrix P. Simulations are performed on real data, with precisely known 

covariance’s to simulate mathematical stability, performance and processing time required by 

each method on a high end microprocessor. The results demonstrate integrated system using 

SRKF has better performance in stability and estimation accuracy than conventional and 

sequential filter. 

1.  Introduction 

Land vehicle navigation systems are one the fastest growing area in-vehicle electronics market [1]. 

Generally, the land Vehicle navigation system gets the positioning information via GPS. Hence the 

GPS can provide sufficient positioning information but suffers seriously especially in tunnels or urban 

canyons where GPS signal gets faded or corrupted; therefore degrading the availability and accuracy 

for the GPS based positioning information. Many high end GPS antennas and amplifiers have been 

designed to solve this problem, but these systems increase the cost of the Navigation Solution. There 

are four main parameters that describe the performance of a navigation system: availability, continuity, 

integrity and accuracy [2].In order to fulfill these requirements, the most widely accepted approach is 

to integration of DR with GPS which increased the integrity and availability of Navigation Solution 

[3].  

Other The principle of DR is to provide the current position of the vehicle based on previous 

position and velocity, and provides continuous real time navigation information. Using only DR has a 

drawback: the navigation error accumulates over time and cannot keep up the accuracy requirements. 

Therefore for a complete navigation solution, DR can provide the vehicle positioning information 

when GPS is not available, while GPS can correct the accumulated error of DR [4]. Most commonly 

used DR sensors for land vehicle navigation include odometer, gyro and magnetic compass. In our 

work, we have utilized a single axis gyroscope which provides the angular rate of change in the 

heading direction while Odometer which provides absolute velocity information as Dead Reckoning 
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sensors. Another approach like map matching algorithms with DGPS used for Land Vehicle position 

determination in[5].The low cost IMU Integrated with GPS System for Land Vehicle Navigation by 

using kalman filter is proposed in[6,7]. Cascade filters implemented for DR navigation solution in [8] 

via using a wheel encoders to provide distance and a magnetic compass to provide direction. Also, 

differential wheel speed sensor integrated with an inertial measurement and GPS are used in [9] to 

reduce the errors from sideslip and eliminate the large errors in vehicle motions by using two 

nonlinear kalman filter forms. And some of another Kalman filter forms used to estimate vehicle 

position by using heading sensors combined with speed sensors during GPS unavailability in [10-13]. 

The key problem of GPS/DR integrated system is how to achieve the optimal estimation for the 

position, moving and states of interest parameters. Our work involves designing land based 

navigational solution with our prescribed model and investigating still provides any superiority over 

conventional or batch Kalman filtering as well as to compare the computational time required by each 

method. We have chosen SKF and SRKF and compared the results with conventional KF in our 

problem of designing navigation solution for a land vehicle on a high end processor. In the following 

sections, we begin with describe the mathematical model for GPS/DR integration then a brief 

summary about the algorithms of the sequential and square root Kalman Filter. The part of the 

simulation and discussion to show the effect of (KF), (SKF) and (SRKF) on the integration, 

Simulation results and a comparison of these methods are presented in section 2. Finally, in section 3, 

these methods are evaluated in theory and simulation. 

2.  Formulations and equations 

2.1 GPS/DR Mathematical Model 

2.1.1 The state equations. The east position   , north position   , heading  , speed  , gyro rate  ̇ , 

bias ,   and  odometer scale  can be expressed in state space form as: 

  (𝑘 + 1) =    (𝑘) + 𝑉(𝑘)𝑇𝑠𝑖𝑛(   (𝑘)) + 𝑤1 (1) 

  (𝑘 + 1) =    (𝑘) + 𝑉(𝑘)𝑇𝑐𝑜𝑠(   (𝑘)) + 𝑤2 (2) 

   (𝑘 + 1) =    (𝑘) + 𝑇 ̇ (𝑘) + 𝑤3 (3) 

𝑉  (𝑘 + 1) =  𝑉  (𝑘) + 𝑤4 (4) 

 ̇(𝑘 + 1) =   ̇ (𝑘) + 𝑤5 (5) 

  (𝑘 + 1) =    (𝑘) + 𝑤6 (6) 

  (𝑘 + 1) =    (𝑘) +
𝑉(𝑘) −  (𝑘) (𝑘)

 (𝑘)
+ 𝑤7 

(7) 

A processes noise    is white, zero-mean, uncorrelated, and has known covariance matrix   . 

2.1.2 The observation equations. The measurements equations are expressed as: 

 𝑔𝑝𝑠 =   (𝑘) + 𝑣1 (8) 

 𝑔𝑝𝑠 =   (𝑘) + 𝑣2 (9) 

  𝑔𝑝𝑠 =    (𝑘) + 𝑣3 (10) 

𝑉𝑠𝑝𝑒𝑒𝑑(𝑘) = 𝑛(𝑘)  (𝑘) + 𝑣4 (11) 

 ̇𝑔 𝑟𝑜(𝑘) =   ̇ (𝑘) +  + 𝑣5 (12) 

The measurement noise    is a zero mean white noise and the measurement noise covariance 

matrix   . 

2.2 Sequential Kalman Filter 

This technique is also called “sequential-sensor method” [14]. The approach is to implement the 

kalman filter while avoiding the matrix inversion during the computation of the kalman gain and 
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considering every sensor observation as an independent and separate realization. At each time-step the 

kalman gain and the new prediction are computed at every observation from every sensor. 

2.2.1 The system and measurement equations. 

 

 (𝑘) =  (𝑘 𝑘 − 1) (𝑘 − 1) +  (𝑘 − 1) (13) 

 ( ) =  (𝑘) (𝑘) +  (𝑘) (14) 

 

Where            uncorrelated and white noise. The measurement covariance matrix     is a diagonal 

and given by   =     ( 1       ), Uncorrelated measurements in  ( ) can be taken as 

accomplished step by step. 

 

[
 
 
 
  

1

  
2

 
  

𝑟 ]
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1

  
2

 
  

𝑟 ]
 
 
 

  +

[
 
 
 
  

1

  
2

 
  

𝑟 ]
 
 
 

 

 

 

(15) 

2.2.2 Realization of SKF.  The state prediction and the corresponding covariance at any one time step for 

the first observation   
1 are given by 

 ̂ 
 =  ̂(      −  ) 

 

(16) 

  
 =   (𝑘   𝑘 − 1) (17) 

 

The next new state estimation made by fusing   
1 which achieved at time   by the first sensor is given 

as 

 

 ̂ 
 =  ̂ 

 +   
 (  

1 −   
1 ̂ 

 ) (18) 

  
 = ( −   

   
1)  

  (19) 

  
 =   

   
1 

   
1  

   
1 

+   
1    (20) 

 

To fuse the observation from the second sensor so, it requires   ̂ 
  to produce a prediction. Generally, 

the estimation of   ̂ 
  at time   on the basis of the observations from all the sensors until time ( −  ) 

and through first   sensors until time   can to calculate from the estimation of    ̂ 
    . Update 

sequentially until the last observation   
  then the estimation of    ̂ 

  at time   on the basis of the 

observations from all the sensors until time ( −  ) and through first   sensors until time   can to 

calculate from the estimation  ̂ 
    as kalman throughout 

 

 ̂ 
 =  ̂ 

   +   
 (  

𝑟 −   
𝑟  ̂ 

   ) (21) 

 

 ̂ 
 =  ̂(𝑘   𝑘 ) 

 

(22) 

  
 = ( −   

   
𝑟)  

    (23) 

  
 =   (𝑘   𝑘) (24) 

  
 =   
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+   
𝑟    (25) 
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2.3 Square Root Kalman Filter  

SRKF effectively increases the accuracy of the Kalman filter by reducing the divergence and 

instability, but on the other side increase the computational cost [15]. Generally, square root filter is 

stable numerically more than the conventional filter; also, it is less affected by numerical problems 

[16]. This technique is also known as the covariance square root filter. It works by calculating square 

root of covariance matrix P using Cholesky decomposition, given by: 

 

 = 𝑺𝑺 = [
 11 ⋯ 0
 ⋱  

 𝑛1 ⋯  𝑛𝑛

] [
 11 ⋯  𝑛1

 ⋱  
0 ⋯  𝑛𝑛

] 
 

(26) 

Where  

  

 

 

Figure 1.  
Conventional 

and Sequential 

KF Results for 

absolute 

position error 

  

 

 

Figure 2.  
Conventional 

and Sequential 

KF  Results 

for absolute 

heading error  

  

 

 

Figure 3.  
Conventional 

and Sequential 

KF Results for 

absolute 

velocity error 
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   = √   − ∑   
2

  1

  1

                    (𝑖   ) 

 

(27) 

   = √
1

   
(   − ∑       

  1

  1

)    (𝑖   ) 

 

(28) 

   = 0   (𝑖   ) (29) 

Mathematically, there is no difference between the square root and conventional filter time update 

equation for   but the difference is to update and propagate   instead of   [15]. In ill-conditioned cases 

this approach can yield double effective precision as compared to the standard filter [17].  And 

successfully keeps the error covariance as a positive semi definite which yields the numerical stability 

as well. The difficulties in the numerical calculations maybe cause    to be indefinite or non 

symmetric but cannot cause the same for    [15]. Numerical problems may arise and The Error 

covariance matrix can become ill conditioned if one state variable has a much higher uncertainty than 

another. The square root Kalman filter works effectively especially if the estimation problem is ill 

conditioned or computer word length is limited. 

2.3.1 The square root time update equations. The filter of Square root covariance propagate Cholesky 

factor of a priori error covariance matrix   (𝑘   𝑘 − 1). 

 

  (𝑘  𝑘 − 1) = 𝑺(𝑘   𝑘 − 1)𝑺 (𝑘   𝑘 − 1) (30) 

 

Where  (      − 1) is square root of a priori error covariance matrix   (      − 1) and chosen to be 

lower triangular. As well,  (     ) is square root of a posteriori error covariance matrix   (     ) and 

initially   (0  0)  (0  0) =   (0 0) . However, there are 2 cases related with the system model if it 

has a dynamic noise for all time  (   0) or zero process noise(  = 0). The time propagation with 

neglecting control inputs in case of (  = 0) will be as follows: 

 

 ̂(𝑘   𝑘 − 1)  =   (𝑘 𝑘 − 1 ) ̂(𝑘 − 1  𝑘 − 1) (31) 

  (𝑘   𝑘 − 1)  =    (𝑘)   (𝑘 − 1  𝑘 − 1)    (𝑘 ) (32) 

 

By letting    (𝑘  𝑘 − 1) = 𝑺(𝑘   𝑘 − 1)𝑺 (𝑘   𝑘 − 1) and    (𝑘 − 1  𝑘 − 1) = 𝑺(𝑘 − 1   𝑘 −
1) 𝑺 (𝑘 − 1   𝑘 − 1) , equation (32)  can be rewritten as 

 

 𝑺(𝑘   𝑘 − 1)   𝑺 (𝑘   𝑘 − 1) =    (𝑘) 𝑺(𝑘 − 1   𝑘 − 1)    𝑺 (𝑘 − 1   𝑘 − 1)    (𝑘 )   (33) 

 

From this equation it is clear that the appropriate time propagation for the square root filter would be 

 ̂(𝑘   𝑘 − 1)  =   (𝑘 𝑘 − 1 ) ̂(𝑘 − 1  𝑘 − 1) (34) 

𝑺(𝑘   𝑘 − 1) =   (𝑘) 𝑺(𝑘 − 1   𝑘 − 1) (35) 

 

The time propagation with neglecting control inputs in case of (   0) will be as follows: 

 

 ̂(𝑘   𝑘 − 1)  =   (𝑘 𝑘 − 1 ) ̂(𝑘 − 1  𝑘 − 1) (36) 

  (𝑘   𝑘 − 1)  =     (𝑘) 𝑺(𝑘 − 1   𝑘 − 1)    𝑺 (𝑘 − 1   𝑘 − 1)    (𝑘 ) 
+   (𝑘 )  (𝑘 )   (𝑘 ) 

(37) 
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In this case will compute   (      − 1) firstly and then generate   (      − 1) as its Cholesky lower 

triangular square root and this method called root sum square (RSS) and this case is simulated in the 

paper. 

2.3.2 The square root measurements update equations. 

 ̂(𝑘   𝑘 ) =  ̂(𝑘   𝑘 − 1)  +   (𝑘 )( (𝑘 )  −   (𝑘 ) ̂(𝑘   𝑘 − 1))  

(38) 

  (𝑘 ) =   𝑺(𝑘  𝑘 − 1)   (39) 

𝑺(𝑘  𝑘 ) = 𝑺(𝑘  𝑘 − 1)  −         
   (40) 

  = 𝑺 (𝑘 𝑘 − 1)  (𝑘) (41) 

  =    
   +     1 (42) 

  =  1 +       
1
2  1 

(43) 
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Figure 4.  Conventional 

and Square Root KF 

Results for absolute 

position error 

Figure 5.  Conventional 

and Square Root KF 

Results for absolute 

heading error 

Figure 6.  Conventional 

and Square Root KF 

Results for absolute 

velocity error 
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3.  Experimentation and Results 

A GPS receiver is mounted on a land vehicle which provides east and north position, velocity, and 

heading angle in the navigation frame. MEMS gyroscope sensor is used for yaw rate measurement 

along with odometer for speed measurement. The measurement noise covariance is already known 

precisely. The data is recorded and is processed offline on a mini processing unit. Three separate 

Kalman filters namely conventional, SKF and SRKF are implemented separately with same process 

and measurement covariance matrices. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The absolute position, velocity and heading are shown in the figures (1, 2 and 3) for conventional and 

SKF. In figures (4, 5 and 6), a comparison of conventional with SRKF is shown. A complete 

comparison for all the states for the three sorts of Kalman filter methods is summarized in the bar 

graph shown in figure 7. It is clear that the SRKF has slightly better performance than the other two 

Kalman Filters. Figure8 summarizes the computation time utilized by each method for single iteration. 

 
 

Figure 8. Computational Time Comparison of 

Three Filters 

Figure 9. Convergence Vs Time for 

Conventional and Square Root KF 

Figure 7.  Mean Square error Comparison between Three 

Filters 
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Computation time of conventional is smallest while SRKF is largest. In figure 9 the convergence 

speed comparison of SRKF and conventional is shown. The superiority of SRKF over conventional is 

due to its lower convergence time. The convergence time of SKF and conventional is same. 

4.   Conclusion 

The results clearly show that the SRKF method based on the Cholesky factorization performs slightly 

better than the other two methods which perform equally. This is because the convergence rate of 

SRKF is better than conventional and SKF. If we increase the number of states, the SRKF method 

may provide an increased efficiency. The computation time for SRKF is four times that required for 

conventional Kalman filter.  Therefore, if computational time requirements are not stringent and 

numbers of states are more, then we can use SRKF while for less number of states, ordinary Kalman 

filter performs quite well. These results are only valid for high end processor based applications. For 

low computational power embedded systems and SRKF will obviously work far better, even for 

reduced number of states. 
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