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Abstract: The diamagnetic susceptibility of a shallow donor confined to move in Quantum 

Dots „QD‟ in the presence of a magnetic field is theoretically investigated. The numerical 

calculations are performed in the effective mass approximation, using a variational method. We 

describe the effect of the quantum confinement by an infinite deep potential. The form effect is 

studied for the Spherical Quantum Dot „SQD‟ and Cylindrical Quantum Dot „CQD‟. The 

results for these two forms of structures show that the diamagnetic susceptibility and the 

binding energy increase with the magnetic field. There are more pronounced for larger dot. We 

remark that for a zero magnetic field, the binding energy and the diamagnetic susceptibility are 

decreasing functions of the quantum dot radius. 

 

1. Introduction 

In the recent years, it became possible to fabricate high quality semiconductor quantum dots (QDs) 

with good electronic and optical properties due to the development of experimental crystal growth 

techniques [1-3]. These structural quantum dots have attracted a great deal of attention from academic 

and technological viewpoints [4-6]. The physical properties are improved by the reduction of the 

dimensional quantum confinement of carriers, they drastically changes the electronic structure in QDs 

from that of bulk semiconductors. In the past few years, several theoretical [7] and experimental [8] 

investigations have been reported on  the behavior of shallow hydrogenic donor  impurity in quantum 

dot. The effects of applied magnetic fields on the physical properties are given in the reference [9-11]. 

Recently, Ulas et al  [12] have reported the study of electric field and geometrical effects on a shallow 

donors  binding energy in a quantum well wire. They have obtained that the donor binding energy is 

sensitive to the interplay of the electric field and geometrical effects. Zounoubi et al [13] have studied 

the influence of magnetic fields on the binding energy and polarizability of a shallow donor impurity 

placed at the center of a cylindrical quantum dot (CQD). They have showed that the magnetic field 

increases the binding energy and strongly reduces the polarizability. For higher field strength and large 

dot, the magnetic field effects are predominant. Ulas et al  [14] have  also calculated electric field and 

geometrical effects on the self polarization in GaAs–(Ga-Al)As quantum well wires of square, 

rectangular and cylindrical cross-sections. They have found that the self-polarization effect outside of 

the center depends on both the geometrical form of the wire and the impurity position in the same 

structure. Several properties of the donors such as the polarizability [15]  and diamagnetic 

susceptibility  [16-19] are yet to be obtained experimentally. Recently, several theoretical works have 

been reported on the  diamagnetic susceptibility of impurity in low dimensional systems. Peter et al 

[20]  have computed and compared the susceptibility for a hydrogenic donor in a spherical 

confinement, harmonic oscillator-like and rectangular well-like potentials for a finite QDs. They 

observed a   strong influence of the shape of confining potential and geometry of the dot on the 
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susceptibility. Rahmani et al [21]   have studied the diamagnetic susceptibility of a confined donor in 

Ga1-xAlxAs-GaAs Inhomogenous Quantum Dot without a magnetic field. They found that the 

diamagnetic susceptibility depend strongly on the core and the shell radius and presents a minimum 

for a critical value of the ratio R1/ R2 depending on the value of the outer radius. Kilicarslan et al [22]  

have investigated the effects of the magnetic field and the dielectric screening on the diamagnetic 

susceptibility of a donor in a QW with anisotropic effective mass. Koksal et al  [23] have studied the 

magnetic field effects on the diamagnetic susceptibility and binding energy of a hydrogenic impurity 

in a QWW by taking into account spatially dependent screening. They show that the diamagnetic 

susceptibility is more important for donors in QWW over a large range of wire dimensions. Kilcarslan 

et al [24] have studied the magnetic field effects on the diamagnetic susceptibility in a GaxIn1-x 

NyAs1-y/GaAs QW and found that the diamagnetic susceptibility and binding energy of the magneto-

donor in the GaxIn1-x NyAs1-y/GaAs  QW increases with Nitrogen mole fraction.. El Ghazi et al [25]  

have studied the dependence of the binding energy as function of external magnetic field and donor's 

position in GaN│(Ga,In)N│GaN spherical quantum dot–quantum well (SQDQW) Their results show 

that the magnetic field effect is more marked in large layer than in thin layer and  it is more 

pronounced in the spherical layer center than in its extremities. A. Mmadi et al [26,27] have calculated 

the effects of an applied magnetic field on the diamagnetic susceptibility of a shallow donor confined 

to move in a spherical homogeneous Quantum Dots “HQD‟‟and in Cylindrical Quantum Dot “CQD‟‟. 

They have found that the diamagnetic susceptibility increases with the magnetic field and is more 

important especialy for larger structure of quantum dot. 

The present paper is organized as follows: the model and the calculation method  for calculating the 

ground-state binding energy  and diamagnetic susceptibility of a shallow donor in QD are presented in 

Section2. The numerical results and discussions are shown for a Spherical QD  of radius Rs  and 

Cylindrical QD of radius Rc and length Hc   in Section3. 

2. Model  and calculation 

We consider a donor  impurity located at the center of the spherical quantum dot “SQD”  of raduis Rs 

and the cylindrical quantum dot “CQD” with radius Rc and length Hc  in the presence an applied a 

magnetic field B  one along the z-direction. 

2.1 Spherical Quantum Dot 

The Hamiltonian that describes the problem of a hydrogenic impurity located in a spherical QD at  the 

centre of the dot in the effective-mass approximation  and in spherical coordinates can be expressed as 

[9]: 
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 characterizing the strength of the magnetic field and the effective cyclotron frequency 

respectively.  

We use a variational method approach to determine the ground state binding energy; we adopt the 

wave function  given by [9]: 
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 and  λ is a variational parameter. The exponential factor rexp  describes the Coulomb 

spatial interaction. The corresponding energy is obtained by minimization with respect to the 

variational parameter λ: 

       The binding energy of the donor impurity  located at the center of  a Spherical  Quantum Dot is 

given by 

                                                                       min
Ε HESubb 

                                                    (4)                                       

Where min
H  is the minimum of the expectation value of the Hamiltonian obtained by varying the 

variational parameter λ. 

2.2 Cylindrical Quantum Dot 

In this section, we consider the case cylindrical quantum dot (CQD) with radius R and length H, with a 

donor impurity  placed at the center of the dot. In the effective mass approximation, the Hamiltonian  

can be written in cylindrical coordinates and reduced units as [26]: 
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Where  ρ and z are the electron coordinates in the plane perpendicular and along the cylinder axis 

respectively. Lz is the z component of the angular momentum operator. 
),( zV 

  is the confining 

potential given by. 
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Since the Schrödinger equation cannot be solved exactly, we follow the Hass variational method. We 

choose the wave function for the impurity ground-state as [14]: 
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where 0J  is the Bessel function of zero order; 40482.20  is its first zero, α and β are variational 

parameters and N  is the normalization constant. The corresponding energy is obtained by 

minimization with respect to the variation parameters α and β.        

The binding energy of the donor impurity  located at the center of  a Cylindrical Quantum Dot is given 

by 

                                                                               min
Ε HESubb 

                                           (8)                                        
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Where min
H  is the minimum of the expectation value of the Hamiltonian obtained by varying the 

variational parameters α and β. 

The Schrodinger equation is solved variationally to find the ground state wave function, which has 

been used in the computation of diamagnetic susceptibility dia
of the hydrogenic donor given as 

[27]:   
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The final results on the diamagnetic susceptibility are obtained by numerical minimization of the 

energy expression with respect to the parameters λ for SQD and α and β for CQD. 

3. Numerical results and Discussion 

(For the GaAs material, we have: the effective Bohr radius a * = 98.6 ° A, the effective Rydberg R * = 

5.85 MeV, the effective mass m * = 0.067 me and finds dielectric = 12.5) 

In this section, the diamagnetic susceptibility of a hydrogenic impurity confined in a quantum dot  

with and  without applied  magnetic field is calculated numerically.  Using a variational procedure in 

the effective mass approximation. Numerical applications are for a typical GaAs SQD and  CQD. The 

binding energy versus the quantum dot radius for different magnetic fields (γ = 0, 0.5 and 1) is 

presented in Figure1. From this figure, we remark that in the strong spatial confinement case (Rs< 

2a*) and (Rc<1.5a*), the binding energy is relatively insensitive to the magnetic field and is identical 

to the zero magnetic field case. This explains that the main contribution to the binding energy is the 

electron spatial confinement energy and that the electron spatial confinement prevails over the 

magnetic field confinement. For the week spatial confinement (Rs>2a*) and (Rc>1.5a*), the different 

magnetic field curves tend to deviate from each other and reach steady values as the dot radii increase. 

Also, we can see that without of a magnetic field, the binding energy tends to the value of the bulk 

semiconductor (Eb1R*),  while for a given value of the magnetic field, the binding energy is larger 

than for the case without a magnetic field. The physical meaning of this is that increasing the strength 

of the magnetic field shrinks the electron wave function and decreases the cyclotron radius for the 

electron relative to the quantum radius and confines the electron closer to the on-center impurity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.1 Variation of donor binding energy as a function of  Rs raduis of a SQD and  as a function of  
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Rc   radius and  H= 3a*  of  a CQD  for three values of magnetic field (γ = 0, 0.5 and 1) 

We have reported in figure2-a and figure2-b the diamagnetic susceptibility dia
 of a donor  as a 

function of the spherical radius Rs and as  a function of the cylindrical radius Rc with different values 

of the lengths (Hc=0.6a*, 1a*, 3a* and 20a*)  for (γ = 0).  We consider the case of a donor impurity  

placed at the  center of this two structures. From figure 2-a,we can see that the diamagnetic 

susceptibility dia
 decreases as the radius Rs increases. We remarque also that diamagnetic 

susceptibility decreases strongly and eventually converges to the bulk limit  value (−1.1a.u) [16, 18] 

for (
sR

). For figure2-b,  we remark  that the diamagnetic susceptibility dia
 decreases when 

the radius dot  Rc increases for each value H. our results show that for strong axial confinement 

(Hc=1a*) and weak radial confinement (Rc >>1a*), the diamagnetic susceptibility dia
 decreases 

and tends to the quantum well value (-0.2a.u) [19]. Nevertheless, for weak axial confinement 

(Hc>>1a*) and weak radial confinement (Rc>1a*), we see that the diamagnetic susceptibility 

decreases with the increase of CQD length and approaches to the three dimensional value (-1.1a.u) 

which correspond to the bulk limit case (see Ref[16, 18]). It should be noted that the diamagnetic 

susceptibility dia
 is more sensitive for large dimensional in these two cases. Our results are in 

perfect agreement with previous calculations without the magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2 Variations of the diamagnetic susceptibility dia
 as a function of  Rs raduis of a SQD :(a)  

and as a function of  Rc   radius  and with  several  values  of the length 

 (H=0.6a*, 1a*, 3a* and 20a*) of  a CQD: (b) 

 

The diamagnetic susceptibility of a shallow donor as a function of  a SQD and a CQD dimension 

obtained by using a variational method with an infinite barrier are presented in table1 and table2. From 

Table1, we conclude that the diamagnetic susceptibility dia
  values decreases with increasing 

spherical radius. In the bulk limit dia
 should approach (-1.1a.u). We obtain ( dia

= -1.1012 a.u) 

for Rs = 11a*. As in table2, It is easily observed that the variation of the diamagnetic susceptibility 
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dia
 increases with cylindrical size and approaching the bulk value (-1.0807a.u) for Rc =11a* and 

Hc=11a*. These two form of quantum dot gives good results  of the diamgnetic susceptibility when 

the quantum dot size becomes very large, a comparison has been reported in Ref [28]. 

 

 

Table1. Diamagnetic susceptibility of a Spherical Quantum Dot  

SQD RS =1a* RS=3a*     RS=5a*  RS=7a*       RS=9a*       RS=11a*       

Xdia(a.u) -0.0928 -0.5408     -0.9684              -0.9684       -1 .0416         -1.1012           

 

Table 2. Diamagnetic susceptibility of a Cylindrical Quantum Dot  

CQD Rc =1a* 

Hc=1a* 

 Rc=3a*        Rc=5a*  

 Hc=3a*        Hc=5a* 

   Rc=7a*          Rc= 9a* 

   Hc=7a*         Hc= 9a* 

    Rc= 11a* 

    Hc= 11a* 

Xdia(a.u) -0.0827 -0.4848       -0.7955 -0.9411       -0.9869 -1.0807 

 

In order to investigate the magnetic field and the form effect, we display in figure3-a and  figure3-b 

the diamagnetic susceptibility dia as a function of the dot radius Rs  and Rc of SQD and CQD 

respectively width several values of magnetic field (γ = 0, 0.5 and 1). The donor is placed in the centre 

of the dot. There is a competition between the geometric confinement and the magnetic confinement.  

From figure3-a, the magnetic field effect on the diamagnetic susceptibility is not remarkable for small 

dot (Rs <2a*),  the magnetic field effect becomes important for large QD (Rs ≥ 2a*).  Also as 

expected the diamagnetic susceptibility  increases with magnetic field due to compression of the 

electron wave function with the magnetic field. It‟s important to note that the diamagnetic 

susceptibility dia decreases when the dot radius Rs increases. For figure3-b, the effects of the 

magnetic field on diamagnetic susceptibility dia as a function of the radius Rc for different values of 

the length Hc (Hc = 1a* and Hc=3a*) has been plotted. We notice  that for strong radial confinement 

(Rc<1.5a*), the magnetic field effect on the diamagnetic susceptibility is not remarkable. The 

diamagnetic susceptibility increases with the magnetic field. This increase is due to a shrinking of the 

charge distribution when an external magnetic field is applied. Furthermore, for given values of Rc 

and γ, the diamagnetic susceptibility increases when the length of the dot decreases which reflects the 

increasing confinement. These results explain that in the presence of the magnetic field, the 

diamagnetic susceptibility dia remain to be constant over a large dot [25, 32]. Also, the diamagnetic 

susceptibility are found to be almost identical for dot of spherical and cylindrical  if the dot 

dimensions taken to be comparable.   

         Now, by comparing figure4-a and figure4-b, we plotted the variation of the diamagnetic 

susceptibility  as a function of the magnetic field strength for fixed QD geometries. This figure reflects 

correctly the effect of the magnetic field, which confines more the electron and increases the 

diamagnetic susceptibility. From figure4-a, we took three values  of  a spherical dot radius Rs (Rs = 

1a*, 1.25a* and 2a*). We  notice that for quantum dots quite small geometrical dimensions (Rs = 1a* 

and 1.25a*), the diamagnetic susceptibility  is relatively insensitive to the magnetic field  and is 

identical to the zero magnetic field case. For the quantum dots which is the geometrical dimension 

wide enough (Rs= 2a*),  the diamagnetic susceptibility dia
 increases when the magnetic field 
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increases and reaches a limit value when the magnetic field becomes very strong. For figure4-b, we 

plot the variation of the donor diamagnetic susceptibility dia
 for three different radius values of 

cylindrical quantum dot  (Rc=1a*, 2a*and Rc = 3a*) and H = 3a.  We can remark that the diamagnetic 

susceptibility dia
 increases as CQD radius Rc decreases. The diamagnetic susceptibility is totally 

insensitive to the increase of the magnetic field for small radius confinement (Rc=1a*). For large  

radius confinement case (Rc>2a*), the variation of the diamagnetic susceptibility is much more 

pronounced due to the stronger confinement effect of the magnetic field. From the two forms of the 

dot, it is clearly seen that the diamagnetic susceptibility decrease as the QD radius increases or the 

magnetic field strength decreases. As observed that the magnetic field  effect and geometry effect, 

influence directly on the diamagnetic susceptibility behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3 Variations of the diamagnetic susceptibility dia
 as a function of  Rs raduis of a SQD: (a) 

and  as a function of  Rc   radius and  (H = 1a* and H= 3a*)  of  a CQD: (b) 

for three values of magnetic field (γ = 0, 0.5 and 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4 Variation  of the diamagnetic susceptibility χdia function of magnetic field with three  

                              γ  
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values RS (RS= 1a *,1.25a * and  2a *) of a SQD: (a)  and with three  values radius (Rc=1a*, 2a* and 3a*)  

and  Hc = 3a* of  a CQD: (b) 

4. Conclusion 

In the present work, we have reported the form and magnetic field effects on the diamagnetic 

susceptibility of a hydrogenic donor placed in spherical and cylindrical quantum dot by using the 

effective mass approximation. The diamagnetic susceptibility is dramatically dependent on the size of 

the dot and increases as the radius of the dot decreases. Under a magnetic field, additional increases 

for diamagnetic susceptibility are presented for nanostructure over a large range of QD dimensions. 
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