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Abstract. A neuromorphic control system for a lightweight middle size humanoid biped robot
built using 3D printing techniques is proposed. The control architecture consists of di�erent
modules capable to learn and autonomously reproduce complex periodic trajectories. Each
module is represented by a chaotic Recurrent Neural Network (RNN) with a core of dynamic
neurons randomly and sparsely connected with �xed synapses. A set of read-out units with
adaptable synapses realize a linear combination of the neurons output in order to reproduce
the target signals. Di�erent experiments were conducted to �nd out the optimal initialization
for the RNN's parameters. From simulation results, using normalized signals obtained from the
robot model, it was proven that all the instances of the control module can learn and reproduce
the target trajectories with an average RMS error of 1.63 and variance 0.74.

1. Introduction

For humanoid robots to be able to operate in household and public environments, they should
be physically safe when sharing the workspace with humans and be autonomous and adaptable
while performing locomotion, object recognition, and grasping.

The conventional approach towards ensuring safe human robot interaction is to prevent
collisions, which is usually achieved by setting mechanical barriers, using special actuators, or
internal force and torque sensors [1]. This cannot be implemented for humanoid robots as it leads
to limited workspace, which is not acceptable in operating environments shared with humans
where physical contact is inevitable. Therefore, the system should be designed such that forces
applied on human are below the limit that can injure or inhibit the human operator. Our solution
is to decrease the weight and the inertia of the links by employing light-weight materials and
high power-to-weight ratio actuation systems. This has the e�ect of reducing the potential and
kinetic energy of the robot limbs while operating and therefore, makes human robot interaction
safer. Following these guidelines, the humanoid we designed has a total of 28 Degrees of Freedom
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(DOF) and a weight of 3kg. In particular, as depicted in �gure 1, there are 6 DOF in each leg,
6 DOF in each arm, 2 DOF in the pelvis and 2 DOF in the neck. This will allow the robot
to perform 3D dynamic walking and to reach di�erent objects in its workspace by performing
human-like motion.

Autonomy and the capability to adapt to new environments are very important features
for a humanoid robot. The learning and execution phases occur at the same time in biological
organisms as they are forced to exist and survive in a changing environment while simultaneously
learning and improving their sensory-motor strategies. Therefore, a challenging goal for
humanoid robotics is to develop control systems that can be executed and adapted while the
robot is operating. By integrating Arti�cial Neural Networks (ANN) in the control architecture
the robot can elaborate input signals in real time [2] and respond to stimuli through a set
of coordinated motor actions [3], [4], [5]. RNN based on leak-integrate-and-�re neurons were
proven to reproduce the behavior of microcircuits located in cortex of the human brain. In
particular, they are capable to predict sensory inputs [6], compute tasks in real-time such as
speech recognition and analysis of visual information [7] [8] [9] and generate reaching trajectories
[10]. In [11] it was demonstrated that the presence in the circuit of feedback signals from read-
out units with adaptable synapses allow the RNN to learn complex periodic signals without the
excitation of additional inputs. The synapses can be adapted on the base of an error signal
calculated as the di�erence between the target signal and the output of the neural circuit or by
a reward-modulated Hebbian learning rule [12]. This represents a more biologically plausible
mechanism that can be used in all the situations where the current performance of the robot
depends on motor actions performed in the past [13].

Brushless DC
Motor

Position
Sensor

T1

T2

T3

T1

T2

T3T1T1 T1T1

T2T3 T2T3

T1
T3
T3T3

T3

T1
T1

T2T2

1DOF

2DOF

T1

T3
T1T1T3

3DOF

Figure 1: 28 DOF humanoid robot's kinematics

architecture.
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Figure 2: Control architecture.

The rest of the document is organized as follows: section 2 describes the control system and
details a single RNN model, section 3 reports the preliminary results on a single control module
capable to learn on training data obtained with a robotics simulator and to generate desired
periodic joint trajectories. Finally, last section draws the conclusions and outlines future work.
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2. Neuromorphic control architecture

The control architecture of the robot is organized in a hierarchical manner as depicted in �gure
2. Neural modules that regulate the motion of each limb are at the lowest level. These modules
have the same structure; in particular, each module is a RNN with �xed connections. The inputs
and outputs of the module are routed towards an input and output layer of read-in and read-out
units with tunable synapses. However, the number of read-in and read-out units can be adapted
during the robot operation. This brings the advantage to introduce new inputs and outputs
when required to perform a new task. Furthermore, if the read-in or read-out unit is wired to a
speci�c piece of hardware (e.g. a joint motor or sensor) the architecture allows creating a new
instance of the unit, adapting the correspondent synapses and passing smoothly the control of
the hardware from previous to the new state. Low level modules that control leg motion have
gait frequency, walking step size height as inputs whereas modules controlling arms receive target
position, velocity, and instantaneous impedance as inputs.

Quantity Value
Number of neurons N 100
Number of external inputs M 0
Number of read-out units L 5
Computational time, s 0.0001
Neuron time constant τ 0.013
Learning constant η 0.002
Decay learning constant dl 200
Chaos-modulation constant C 1.2
Table 1: The neural network parameters
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Figure 3: The single control module

consists of a RNN where the outputs Zi

represent the read-out units.

At the highest level of architecture lies the coordination module that governs each neural
module according to the speci�c tasks. This module receives commands from the planning
module that implements the task; then, it sends feedback on the current state back. This layer
of the control architecture is not based on RNN but rather on logic submodules.

2.1. Joints trajectory generation module

Each module of the control architecture depicted in �gure 2 is capable to learn and generate
di�erent elementary motor paths that represent the building blocks to implement more complex
locomotion and manipulation primitives.

The RNN we implemented (�gure 3) consists of a reservoir of neurons which are randomly and
sparsely connected through excitatory and inhibitory synapses of di�erent strengths which are set
randomly as well [10]. In particular, a single-layer architecture is used; i.e. it was demonstrated
that addition of hidden layers does not provide any signi�cant improvements [16]. Feedback
loops that send the output of linear read-out units back to the network should be included to
make learning possible without any external input. Results of experiments conducted by Sussillo
and Abbott [14] showed that an initially chaotic network is faster to train and generates more
accurate and robust output signals; therefore, the initial activity of our model is set to chaotic.
In this RNN architecture only read-out unit weights are modi�ed whereas other connections are
not altered since their random initialization.
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The RNN neuron is modeled by a di�erential equation (1), where xi is the membrane potential,
τi a time constant, C a parameter that modulates the chaoticity level of the RNN, rj and uj ,
the output and input of the jth neuron respectively, and zj the signal generated by the read-out
units. A nonlinearity (2) is added by a sigmoidal activation function that has also the function
to limit the output of the neurons between [−1 1].

τiẋi(t) = −xi(t) + C

N∑
j=1

wc
ijrj(t) +

L∑
j=1

wfb
ij zj(t) +

M∑
j=1

win
ij ui(t) (1)

Φ(x) =
1− e−kx

1 + e−kx
(2)

To explore new dynamic regimes [15] a Gaussian noise with zero average and variance equal to
0.005 is added to the neurons output and the read-out units (equations 3 and 4 respectively).

rj(t) = Φ(xj(t)) +GNoisej(t) (3)

The probability of a connection between two neurons in the reservoir is P = 0.1 and the input
and feedback weights are set randomly according to the uniform distribution [−11]. The reservoir
comprises a total of 50% of inhibitory synapses and 50% of excitatory one. Although the circuit
is able to generate periodic trajectories without additional signals, external inputs u(t) can be
added to in�uence the neuron potentials according to the weights vector Win ∈ RN . Using this
we can eliminate the presence of phase shift in the generated trajectories with time. Furthermore,
an additional signal scaled by the L by N matrix Wfb forms a feedback from the outputs of read-
out neurons.

The RNN's output z(t) is computed by a linear combination (4) of the outputs of the read-out
units r(t) of a L by N matrix WAd.

z(t) = WAdr(t) +GNoise(t) (4)

The adaption of the matrix WAd is performed by a simple learning rule based on the error
calculated as the di�erence between the target vector and the �ltered version z(t) of the read-
out unit vector z̄(t) at the instant t as in (5).

Err(t) = z̄(t)− F (z(t)) (5)

The read-out synapses are updated according to (6),

WAd(t+ 1) = WAd(t)− η(t)F (r(t))Err(t) (6)

the learning constant decays according to the rule in (7).

η(t+ 1) =
η(t)

1 + t/dl
. (7)

3. Simulation results

Training data was obtained from a simulation of robot static walking. We used the open source
V-REP simulator [16] that has such functionalities as robot kinematics and dynamics, collision
detection, virtual sensors and actuators, and particle dynamics. We acquired the position of the
right leg joints during the execution of a static walk with a sampling time of 10ms for 220s and
a total of 22000 samples.
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The RNN we implemented is not computationally expensive [17] and can run on power-e�cient
computational units. It consists of 100 neurons and 5 read-out units receiving as inputs all the
neurons outputs. The parameters of the circuit are reported in the table 1.

Particularly critical are the initialization of the weight matrix WC(i, j) for reservoir neurons,
the chaos-modulation constant, the time constant, and the learning constant. The �rst three
parameters regulate the RNN dynamics that transforms from an initially chaotic to a stable
with the neuron outputs as periodic signals of constant amplitude. This allows to reproduce the
target signals with a speci�c linear combination of the neurons outputs. The learning constant
value should be higher at the beginning of the learning phase to force the RNN to reach a limit
cycle (see �gure 5) and then should be reduced.

Figure 4: Overall RMS error for each of

the 10 instances calculated on the validation

set. The dashed line represents the mean of

the RMS error.

Figure 5: First two principal components

of the neurons potential signals demonstrat-

ing the convergence ability of RNN circuit.

In total the adaptation phase lasts for 200s. To �nd an optimal value of the matrixWC(i, j) we
performed di�erent experiments with di�erent parameters kept constant and the matrixWC(i, j)
randomly initialized for each model instance. The RNN was trained and the overall RMS error
calculated as the sum of the RMS errors for each read-out unit. From �gure 4 the average RMS
error is 1.63 and variance is 0.74.

In �gures 6 and 7 the outputs of the �rst two read-out unit are reported. The target trajectory
is represented with a black dashed line and the RNN output with a continuous red line. From
this measurements we can see that after the learning phase the RNN is able to reproduce periodic
signals autonomously.

We also observed that after 100s the RNN outputs start to experience a phase shift. This can
be eliminated by introducing an additional RNN input with a speci�c frequency that can serve
as clock reference in the system.

4. Conclusion

In this paper we presented a lightweight humanoid robot equipped with a neuromorphic control
architecture. The joints trajectories for a static walking are learned and reproduced by di�erent
modules organized into a hierarchical architecture. Each module is represented by a RNN
consisting of 100 neurons modeled by a �rst-order di�erential equation. The neurons are coupled
with �xed connections randomly initialized while special read-out units with adaptive synapses
realize a linear combination of the neurons outputs in order to reproduce complex periodic signals.
To optimize the weight matrix, ten experiments were performed where the training and validation
phases were accomplished and the RMS error calculated. Preliminary simulation results show
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Figure 6: Read-out 1 reference signal with

dashed line and RNN signal with red line.

Figure 7: Read-out 2 reference signal with

dashed line and RNN signal with red line..

that despite the small dimension of the network the module is able to reproduce the required
trajectories. As a future work, we intend to implement the algorithm on a small computational
unit e.g. a Raspberry Pi 3 or a BeagleBone and test the trajectories on the real prototype. It
will be interesting also to integrate in the control architecture additional input signals from the
sensory system of the robot. This will allow to produce more complex motor behaviors, e.g. alter
the step size and height to avoid obstacles in its path.
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