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Abstract. This paper presents an optimization work on hybrid electric vehicle (HEV) 

powertrain using Genetic Algorithm (GA) method. It focused on optimization of the 

parameters of powertrain components including supercapacitors to obtain maximum fuel 

economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing 

approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design 

process. Seeking global optimum solution, GA was executed with different initial settings to 

obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a 

smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This 

leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. 

Optimized parameters are also compared with actual values for HEV in the market. 

1. Introduction 

Over recent years, many researchers are working to improve HEV technology especially regarding 

fuel economy. Among these improvements are downsizing of internal combustion engine, 

implementation of energy recovery system, addition of supercapacitors, implementation of optimal 

energy management strategy, and various parameter optimizations.  

Design optimization of powertrain has significant impact on fuel economy. The main components 

of HEV powertrain are internal combustion engine, electric motor-generator, battery pack, and 

supercapacitors. A proper sizing of these components will result in better fuel economy and ensures 

maximum benefit of supercapacitor addition. This will lead to higher fuel economy, improvement of 

vehicle performance, and increases of battery life.  

In order to achieve such proper sizing, optimization offers a reliable solution. It is capable of 

determining a set of best values to meet design objective. In this study, Genetic Algorithms (GA) 

method was utilized. To achieve global optimization, different settings such as; different objectives 

and different GA options are being considered.  

Ceforolini [1] conducted dynamic programming (DP) optimization for determining the best 

topology for HEV. Many topologies were considered in order to compute its best fuel economy 

achievable. Then, overall fuel consumption of different topologies were compared to find best 

topology. Ceforolini [1] concluded that parallel HEV shows the lowest fuel consumption. Thus, this 

work is based on parallel HEV due to its fuel economy benefits. This probably resulted from smaller 

component sizes, and it also requires only one electric motor-generator (EMG). 

Multidisciplinary optimization of a series HEV was considered by Fan [2]. Optimization includes 

both components sizing and power management logic. The objective is to find minimal amount paid 

by consumers for fuel, electricity and battery. The design variables are number of battery banks, state 

of charge (SOC) threshold and engine torque and its speed. Optimizations were carried out using 

Genetic Algorithm (GA), Simulated Annealing (SA), Pattern Search and Nelder-Mead method. GA 
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method was able to find optimal solution for this vehicle design. It shows improvement in fuel 

economy by about 4.3%, and demonstrated lower computational time than SA method.  

Zhang and Mi [3] performed optimization for parallel HEV using DIRECT, SA, GA, and PSO 

method. Based on his results, PSO ranked at the bottom (least improvement in fuel economy), and SA 

ranked at the top (most improvement in fuel economy; 15.01%). GA optimization shows improvement 

about 7.12%. Although GA method is not as good as SA, it was mentioned earlier that SA requires 

significantly more time, about as twice as GA. This lower improvement shows by GA could had 

resulted from the fact that this optimization method uses random candidates to form initial population, 

this population that will yield final optimal results. Thus, to overcome this issue, different settings 

were considered to ensure best optimal can be achieved.  

 

2. Methodology 

In this section, optimization setup of powertrain design problem will be presented. Vehicle modeling 

and energy management strategy (EMS) are based on Mangun et al. [4]. A parallel HEV topology is 

utilized as shown in figure 1. Quasi-Static-Simulation (QSS) (Guzella and Amstutz [5]) using 

backward-facing approach is utilized instead of dynamic approach (forward-facing). The former 

computes fuel consumption from a known drive cycle. The latter computes fuel consumption from a 

known driver input. EMS is built using Fuzzy Logic to manage power flow between ICE and EMG, 

and to manage power flow between battery and supercapacitor.  

 
Figure 1. A parallel HEV with supercapacitor (ECU: electronic control unit, Batt: battery, SC: 

supercapacitor, ICE: internal combustion engine, EMG: electric motor-generator, TC: torque coupler, 

GB: gearbox, FD: final drive). 

 
Table 1. Specifications of supercapacitor (per module). 

Parameter Symbol Value Unit 

Rated capacitance 𝐶𝑆𝐶 165 F 

Voltage 𝑉𝑆𝐶 48 V 

Maximum current 𝐼𝑆𝐶  1900 A 

Energy to weight ratio 𝑆𝐶𝛹 3.9 Wh/kg 

 

Brief information on Fuzzy Logic-based EMS regarding supercapacitors is mentioned here. Despite 

presence of battery, supercapacitor usage is prioritized during regenerative braking and acceleration. 

This means, supercapacitor main energy source is regenerative braking, and it will only be used during 
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acceleration. The specifications of supercapacitor are shown in table 1. The supercapacitor has a low 

self-discharge rate (as low as 20% per month [6]). Within the timeframe of operation of the vehicle 

(hours), the supercapacitor can be used for energy storage. Additionally, supercapacitor has adequate 

specific energy (energy per weight) to supply power during acceleration period which lasts for small 

time. 

2.1. Mass Estimations 

In order to ensure changes in vehicle mass are considered during optimization process, several sets of 

equations were utilized [7, 8, 9 & 10]. Equations for estimating the mass of ICE (𝑀𝐼𝐶𝐸), EMG 

(𝑀𝐸𝑀𝐺), battery (𝑀𝐵), and supercapacitor (𝑀𝑆𝐶,𝑡𝑜𝑡𝑎𝑙) are listed below (mass in kg): 

 

 𝑀𝐼𝐶𝐸 = 1.62  𝑃𝐼𝐶𝐸 + 41.8 (1)  

 𝑀𝐸𝑀𝐺 = 0.833 𝑃𝐸𝑀𝐺 + 21.6 (2)  

 
𝑀𝐵 =

𝐵𝑐𝑎𝑝𝑎

𝐵𝛹

 (3)  

 𝑀𝑆𝐶,𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑠𝑐  𝑀𝑆𝐶  (4)  

Vehicle curb mass (𝑀𝑣𝑐) is estimated using the ratio method: 

 

 
𝑀𝑣𝑐 = (

𝑀𝑛

𝛾𝑛

) + (𝑀𝑆𝐶,𝑡𝑜𝑡𝑎𝑙) ;            𝛾𝑛 =
𝑀𝑛,𝑟𝑒𝑓

𝑀𝑣𝑐,𝑟𝑒𝑓

 (5)  

where 𝑃𝐼𝐶𝐸 is rated power of ICE (kW), 𝑃𝐸𝑀𝐺 is rated power of EMG, 𝐵𝑐𝑎𝑝𝑎 is battery capacity 

(kWh), 𝐵𝛹 is battery specific energy (99 Wh/kg for Lithium-ion battery), 𝑁𝑠𝑐 is number of 

supercapacitors (in parallel), 𝑀𝑆𝐶 is mass of one unit of supercapacitor, 𝛾𝑛 is the ratio between 

reference vehicle nominal mass (𝑀𝑛,𝑟𝑒𝑓) and vehicle curb mass (𝑀𝑣𝑐,𝑟𝑒𝑓), and 𝑀𝑛 is vehicle nominal 

mass (mass of ICE, EMG and battery).  

 

2.2. Genetic Algorithms method. 

GA is based on natural evolutionary process that is occurring in nature, where it represents 

reproduction and evolutions of generations after generations, which selects the fittest or the best that 

survived. A built-in function in Matlab [11] used for GA optimizations. Objective function is 

 

 𝐹𝑓(𝑥) = 𝑚𝑓 𝑜𝑟 𝑚𝑓,𝑒  (6)  

Fuel consumption (𝑚𝑓) can be directly obtained from simulation results. Equivalent fuel 

consumption (𝑚𝑓,𝑒) can be calculated as: 

 

 𝑚𝑓,𝑒 = 𝑚𝑓 +
𝐸𝐸

33.7 × 1000 × 3600 × 0.264172 𝜌𝑓

 (7)  

 

where 𝐸𝐸 (joule) is electrical energy consumed (𝐸𝐸 = 𝐸𝑏 + 𝐸𝑠𝑐, 𝐸𝑏 is battery net discharge 

energy, 𝐸𝑠𝑐 is supercapacitor net discharge energy), and 𝜌𝑓 is gasoline density.  

For design variables, lower and upper bounds were determined based on data for 5 HEV SUV 

(Mitsubishi Outlander, Toyota Highlander, Nissan Pathfinder, Volkswagen Tuoareg & Ford Escape), 

as presented in table 2. For example, ICE capacity range from 2.0 litres (Mitsubishi Outlander) to 3.6 

litres (Toyota Highlander). EMG rated power and battery capacity range were determined by the same 
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method. Since there are no data for the number of supercapacitors, its range is selected based on initial 

simulation runs.  

 

Table 2. Design variables bounds. 

Design Variables Symbol Lower Bound Upper Bound Units 

ICE capacity (𝑋1) 𝑙𝐼𝐶𝐸 2.0 (gasoline) 3.6 (gasoline) Litres 

EMG rated power (𝑋2) 𝑃𝐸𝑀𝐺 20 130 kW 

Battery capacity (𝑋3) 𝐵𝑐𝑎𝑝𝑎 2 20 kWh 

No. of Supercapacitors (𝑋4) 𝑁𝑠𝑐 2 10 - 

 

The curb mass of the vehicle is limited to 2000 kg (an average mass between lightest and heaviest 

HEV from dataset). This condition is implemented as a constraint for the optimization problem. This 

is represented by: 

 
 𝑀𝑣,𝑐 < 2000 (8)  𝑀𝑣,𝑐 < 2000 (9)  

 

Table 3. Summary of different optimization settings (sets). 

Objective 

function 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Minimize  

(𝑚𝑓 𝑜𝑟 𝑚𝑓,𝑒) 
P=20 P=60 P=100 

P=100 

S=Tournament 

P=100 

C=Heuristic 

P=100 

MD= forward 

and backward 

 
For best optimal search, different GA settings including population (P), selection (S), crossover 

(C), and migration direction (MD) were considered as in table 3. Number of optimization runs is 12, 

this means 6 cases for each objective function.  

3. Results and Discussion 
A combined drive cycle (CDC) that is closely representing real-world driving cycle is used for design 

optimization (figure 2). It consists of FTP-75 and HWFET from EPA city and highway drive cycle 

respectively. 

 

 
Figure 2. Combined FTP-75-HWFET drive cycle (CDC). 

 

It is observed from table 4, that best fuel economy at set 3 and best equivalent fuel economy at 

set 5. The difference is 2%.  
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Table 4. Fuel consumption for different optimization settings. 

Objective function Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

  Minimize 𝑚𝑓  
𝑚𝑓 (𝑘𝑔) 1.7362 1.6487 1.4799 1.6326 1.6728 1.5848 

𝑚𝑓,𝑒 (𝑘𝑔) 1.7489 1.7932 1.6671 1.7825 1.8157 1.7600 

 Minimize 𝑚𝑓,𝑒 
𝑚𝑓 (𝑘𝑔) 1.8053 1.6563 1.8734 1.7646 1.4502 1.9036 

𝑚𝑓,𝑒 (𝑘𝑔) 1.8581 1.7628 2.0027 1.8779 1.6447 1.91311 

 

Table 5. Component sizes for both optimization objectives at optimal point 

Objective function 
𝑙𝐼𝐶𝐸  

(𝑙) 

𝑃𝐸𝑀𝐺   

(kW) 

𝐵𝑐𝑎𝑝𝑎  

(kWh) 

𝑁𝑆𝐶 

(unit) 

𝑀𝑣,𝑐  

(kg) 

𝑚𝑓 

(kg) 

𝑚𝑓,𝑒 

(kg) 

  Minimize 𝑚𝑓 2.0 24.7077 15.2434 5 1811 1.48 1.66 

Minimize 𝑚𝑓,𝑒 2.0 21.6430 15.6608 2 1778 1.45 1.65 

 
As shown in table 5, the major difference between objective 1 and 2 (𝑚𝑓 and 𝑚𝑓,𝑒 respectively) is 

that objective 2 (minimize 𝑚𝑓,𝑒) shows lower number of supercapacitor. For both objectives, EMG 

rated power and battery capacity shows little difference. It was decided that setting optimization 

objective to minimize 𝑚𝑓,𝑒 at option 5 (crossover by heuristic) yielded best optimal component size. 

This is because it has minimal fuel consumption and lower number of units of supercapacitors. The 

best optimal parameters are summarized in table 6.  

 
Table 6. Optimal HEV powertrain parameters. 

Parameter Reference Optimized Market HEV Market HEV 

Name Generic HEV Generic HEV 
Mitsubishi 

Outlander 

Volkswagen 

Tuoareg 

Configuration Parallel Parallel Series-Parallel ISAD system 

Transmission 5-speed GB 5-speed GB Single-speed GB 8-speed GB 

ICE capacity, 𝑙𝐼𝐶𝐸  (l) 3.0 2.0 2.0 3.0 Supercharged 

EMG power, 𝑃𝐸𝑀𝐺  (kW) 40 21.64 
60 (front) 

60 (rear) 
35 

Batt capacity, 𝐵𝑐𝑎𝑝𝑎 (kWh) 2.0093 15.66  12.4 (Li-Ion) 1.7 (Ni-MH) 

No. of SC, 𝑁𝑆𝐶 (units) 2 2 - - 

Curb Mass, 𝑀𝑣,𝑐 (kg) 1800 1778 1845 2329 

Fuel consumption,  

𝑚𝑓 (kg) 
2.3496 

1.4502 

(-38.3%) 
- - 

Equivalent fuel consumption, 

𝑚𝑓,𝑒 (kg) 
2.3674 

1.6447 

(-30.5%) 
- - 

 
Table 6 lists the optimized HEV as compared to HEV available in the market. Compared to 

Mitsubishi Outlander, the optimized HEV has the exact same capacity of ICE (2 l) and slightly higher 

battery capacity (15.66 kWh compared to 12.4kWh). EMG size is significantly lower (21.64 kW 

compared to 60 kW). This is due to absence of multi-speed gearbox in Mitsubishi Outlander (for high 

torque output, gearbox is replaced by higher EMG rated power). Volkswagen Tuoareg has a multi-

speed gearbox (for higher torque output), which leads to a relatively low EMG rated power (35 kW). 

This is compatible with the optimized HEV (21.64 kW), which has a multi-speed gearbox.  
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The improvement in equivalent fuel economy is a result of several design changes. Firstly, ICE was 

downsized from 3 litres to 2 litres (smaller ICE capacity consumes less fuel). Secondly, increment of 

battery capacity from 2.0093 kWh to 15.66 kWh, this increased electrical energy usage which has high 

efficiency. Moreover, larger battery capacity reduces ‘on-board charging’ by ICE. This leads to a less 

usage of engine only mode, and more electric and hybrid mode. Thirdly, vehicle curb mass was 

maintained around initial value (1800 kg). Despite the increment of battery size, the final vehicle curb 

mass is reduced to 1778 kg, mainly due to ICE downsizing. This leads to lower inertial and frictional 

forces acting on the vehicle, which improves fuel economy. 

 

 
Figure 3. Supercapacitor state of charge (SOC) during initial period of combined cycle. 

Figure 3 shows pattern of supercapacitor SOC for best optimal HEV, during combined drive cycle. 

During regenerative braking and acceleration periods, SOC has fast increase and decrease. This is 

compatible with supercapacitor characteristics since it has fast charging and discharging rates.  For 

battery, its minimum SOC is limited to 55% to ensure longer life cycle. On the contrary, 

supercapacitor life cycle is significantly longer than battery life cycle. Hence, its minimum SOC is 

limited to a lower value (20% in this study). It was observed that supercapacitor voltage was 

fluctuating because it changes linearly with SOC during discharge operation (supplying power to 

EMG). However, this voltage fluctuation can be regulated by adding a DC-DC converter downstream 

of supercapacitor.  

4. Summary 

Parallel HEV powertrain optimization process was carried out using GA. It yielded improvement in 

fuel economy and equivalent fuel economy. Optimized HEV has smaller components sizes and higher 

fuel economy. It can be concluded that optimized HEV suits a plug-in type hybrid vehicle. This is 

because it has higher battery capacity than most non plug-in HEV. This work on plug-in parallel HEV 

is in progress. The moderate size of EMG had raised an important question about vehicle performance 

and gradeability. This will probably increase both ICE and EMG sizes and result in a reduction of 

electric energy storage size. Therefore, this issue will be investigated in future work by adding 

performance and gradeability constraints.  
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