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Abstract. Oxalic acid dihydrate (OAD) which has very high initial phase transition enthalpy is 
a promising phase change material (PCM). In this paper, shape-stabilized composite PCMs 
composed of OAD and bentonite were prepared by a facile blending method to overcome the 
problem of leakage. FT-IR results indicated the interactions between OAD and bentonite, such 
as the capillary force and the hydrogen bonding, resulting in the confined crystallization 
process. As a result, the OAD was confined to be amorphous. The thermogravimetric analysis 
and scanning electron microscope results showed that sample had the best coating effect when 
the amount of bentonite was 17.7%. The differential scanning calorimetry analyses 
demonstrated that a decrease in the OAD content was accompanied by a continuous decrease 
in the melting point and phase change enthalpy of the composites. 
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1.  Introduction 
Heat storage is used to close the temporal gap between thermal energy production and energy demand. 
In many cases, it is the prerequisite for the utilization of waste heat in periodic industrial processes and 
the connection of renewable energy sources (especially solar energy) to continuous thermal loads. The 
application of phase change materials (PCMs) is one possible heat storage technology. PCMs are 
functional materials for thermal energy storage by storing and releasing amount of latent heats during 
their phase change processes [1]. In recent years, due to high energy storage density and latent heat 
property, small temperature variation from storage to retrieval, and repeatable utilization property, 
PCMs have become a hotspot in the fields of electronics cooling [2,3], solar power generation [4,5], 
waste heat utilization [6,7] and aerospace applications [8], etc.  

PCMs can be divided into inorganic or organic compounds. The latent heat value of inorganic 
PCMs is approximately twice as high as the latent heat value of organic PCMs; in addition, inorganic 
PCMs are commercially available and fairly inexpensive [9-11]. Oxalic acid dihydrate (OAD) is low 
manufacturing cost and wide usage. In OAD, alternating acid and water molecules that act both as 
hydrogen-bond donors and acceptors [12]. OAD needs a lot of energy to break the hydrogen-bond in 
the melting process. Therefore, OAD has a very high heat of fusion of 370 J·g-1 [13], which is a very 
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promising PCM in TES for applications such as industrial waste heat recovery or solar energy storage 
systems [14-17]. This is why authors of this paper have considered the use of OAD as a PCM. 
However, OAD has large degradations of thermophysical properties over time. The melting point of 
OAD is 101°C (onset value) higher than the boiling point of water. When OAD is heated to melt, it is 
easy to produce high pressure caused by the water steam. High pressure not only results in severe 
leakage but also puts forward advanced requirements of the equipment. Meanwhile, actual 
applications of OAD inevitably face the enduring problems: relatively strong corrosivity. Some 
researchers have demonstrated that PCMs can be encapsulated by using porous materials to overcome 
these problems [18].  

Bentonite has strong hygroscopicity and swelling properties, can be dispersed in an aqueous 
medium into gel shape and slurry. Bentonite is an absorbent aluminum phyllosilicate, and its main 
uses are for drilling mud, binder, absorbent and as a groundwater barrier. Due to its nano-layer 
structures, high thermal conductivity and low cost, bentonite also can be used as the supporting 
material of shape-stabilized PCMs (ss-PCMs) [19,20].  

In this paper, we aim to maximize impregnation of OAD between interlayer of bentonite, to reduce 
leakage problem. Therefore, we prepared OAD and bentonite composites with varying concentration 
of bentonite and subsequently investigated the effects of a variety of concentration of bentonite on the 
OAD composites as PCMs.  

2.  Experiments 

2.1.  Materials 
In this investigation, oxalic acid dihydrate (purity 99.5%) and bentonite were purchased from Aladdin 
Chemistry Co. Ltd (China). Deionized water was prepared in the laboratory. 

2.2.  Preparation of OAD composites containing bentonite 
The OAD composites containing bentonite were prepared using a simple blending method. 10 g OAD 
was mixed with different mass bentonite (0.5 g, 1 g, 1.5 g, 2 g or 2.5 g) in a round bottom flask. The 
components of the OAD/bentonite composites are listed in table 1. The resulting mixture was then 
heated at 105 °C and stirred for 30 min. 1 mL deionized water was added to make up the water that 
adhered to the vessel wall in the melting process. Finally, the OAD composites containing bentonite 
were obtained after cooling at room temperature. It was worth noting that bentonite was too many to 
form a homogeneous mixture when the addition amount was 2.5 g. Some bentonite particles 
agglomerated, resulting in non-uniform dispersion. Therefore, the maximum addition amount of 
bentonite was 2 g. 

Table 1. Components of the prepared OAD/bentonite ss-PCMs. 

Samples Components OAD mass fraction 
ss-sample I 10.0 g OAD + 0.5 g bentonite 95.2% 
ss-sample II 10.0 g OAD + 1.0 g bentonite 90.9% 
ss-sample III 10.0 g OAD + 1.5 g bentonite 87.0% 
ss-sample IV 10.0 g OAD + 2.0 g bentonite 83.3% 

2.3.  Characterization 
The morphologies and microstructure of the obtained composite PCMs were investigated using a 
scanning electron microscope (SEM) instrument (JSM-5610LV). Fourier transform infrared (FT-IR) 
spectra were recorded using a Thermo Nicolet NEXUS FT-IR spectrometer. A resolution of 4 cm-1 
and the average of 32 automated scans from 400 to 4000 cm-1 were used to obtain the FT-IR spectra. 
Thermal properties of the composite PCMs, such as melting and latent heats, were measured using a 
Mettler Toledo differential scanning calorimetry (DSC). Measurements were performed at 10 K·min-1 
or 2 K·min-1 in heating procedure and cooling procedure in nitrogen atmosphere. The temperature 
accuracy was ±0.01 °C, and the heat flow repeatability was 0.2 μW. The thermal stability of the 

17th IUMRS International Conference in Asia (IUMRS-ICA 2016)                                                  IOP Publishing
IOP Conf. Series: Materials Science and Engineering 182 (2017) 012010    doi:10.1088/1757-899X/182/1/012010

2



 

 

composite PCMs was determined using a Netzsch STA 449F3 at a scan rate of 5 K·min-1 under an 
atmosphere of nitrogen. 

3.  Results and discussion 

3.1.  Micro-morphology analysis of the ss-PCMs 
Figure 1 shows the SEM images of pristine bentonite powders and the composites. From figure 1(a), 
bentonite is a crystal with layer structures. Moreover, one can observe the presence of a large space 
between discrete layers, which facilitates the intercalation of the solid-liquid PCMs. As illustrated 
from figure 1(b) to (c), grains are getting smaller. Meanwhile, it is easily to observe a homogeneous 
and rough morphology with increasing weight percentage of bentonite. OAD molecules can not only 
crystallize onto the bentonite surface but also in the inner pore of bentonite networks. According to the 
results of SEM, the ss-sample IV shows the best coating effect. This uniform encapsulation also 
indicates good cohesion between the inorganic matrix and OAD, which is due to the effect of capillary 
and surface tension force. 

 

 

3.2.  FT-IR analysis of the ss-PCMs 
FT-IR spectroscopy is usually used to investigate the specific interactions and material compositions 
in composites. Figure 2 displays the FT-IR spectra of pure OAD, bentonite and ss-PCMs. In the FT-IR 
spectrum of OAD, the peak at 1689 cm−1 represents the stretching vibration of the C=O group. The 
peaks at 3430 cm−1 signify O–H stretching vibration. The peak at 1254 cm−1 is assigned to the bending 
vibration of the −OH group. On the spectra of the bentonite, the peaks at 1043 cm−1 and 463 cm−1 
represent O–H stretching vibration and Si–O–Si bending vibration, respectively.  

Figure 1. SEM images of bentonite 
and the composites (a) bentonite, (b) 

ss-sample I, (c) ss-sample IV. 

17th IUMRS International Conference in Asia (IUMRS-ICA 2016)                                                  IOP Publishing
IOP Conf. Series: Materials Science and Engineering 182 (2017) 012010    doi:10.1088/1757-899X/182/1/012010

3



 

 

4000 3500 3000 2500 2000 1500 1000 500

bentonite

ss-sample IV

ss-sample III

ss-sample II

ss-sample I

OAD

 

T
ra

n
sm

it
an

ce
 (

%
)

Wavenumber (cm-1)

(f)

(b)

(e)

(d)

(c)

(a)

1254

3430 1043 463

1689

 
Figure 2. FT-IR spectrum of pure OAD, bentonite and the composite PCMs. 

After comparing the spectra of the composite PCMs with those of bentonite and pure OAD, most 
absorption peaks of the main functional groups of OAD and the corresponding matrix also appear in 
the spectra of the ss-PCMs with only a slight shift. And no obvious new peaks are observed, which 
indicates that no new chemical bonds generate between OAD and the matrix. The frequency shift of 
the functional group indicates that there are some interactions between OAD and the supporting 
materials, which can prevent the leakage of the melted PCMs from the supporting materials. Due to 
the nano-layer structure of bentonite, there is a capillary force between melt OAD and bentonite in 
ss-PCMs [21,22]. Meanwhile, The FT-IR results suggest that there are C=O and O–H groups in both 
OAD and bentonite. Therefore, the hydrogen bonds infer from the frequency shifts of the functional 
group also exist between OAD and the porous materials.  

3.3.  Thermal behavior of OAD/bentonite ss-PCMs 

 
Figure 3. DSC thermograms of OAD and OAD/bentonite composited PCMs with the different amount 

of OAD components  
(a) heating process at a rate of 10 k·min-1, (b) cooling process at a rate of 10 k·min-1. 

The phase change temperature and latent heat of composites are measured with the DSC technique. 
Figure 3(a) and (b) demonstrate the heating and cooling DSC curves of pure OAD and composites 
with various OAD weight fractions at a heating and cooling rate of 10 K min-1, and the corresponding 
data deduce from the DSC curves are listed in table 2. Clearly, all the composites exhibit similar 
curves as pure OAD, indicating that the OAD acts as the PCM during the melting process. However, 
the phase change characteristics of the OADs are affected by adding bentonite. As listed in table 2, the 
onset melting (Tmo) temperature shifts slightly from 101.2 °C for pure OAD to around 99.5 °C for the 
composites. This phenomenon can be ascribed to two reasons. On the one hand, the porous bentonite 
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network in the composites provides heat conduction path in the OAD, which improves the thermal 
conductivity of OAD and consequently accelerates the phase change speed of the composites [23, 24]. 
On the other hand, bentonite is the impurity for OAD and can destroy the perfect crystallization, so the 
defects of crystal lattices increase, which cause the crystals can be damaged at low temperature [25].  

In addition, the areas of the endothermic and exothermic peaks decrease significantly when OAD is 
incorporated into bentonite. Compared with pure OAD, the latent heat of OAD/bentonite composites 
is in the range of 205.8–287.7 J·g-1, which is lower than ideal latent heat which is 372.7 J·g-1. The 
decrease of the latent heat of the composite PCMs cannot be attributed to the lower fraction of OAD 
alone. Another factor is the blending of mesoporous matrices interferes with the crystallization of 
OAD. The interaction between OAD and its supports may keep OAD from crystallizing and influence 
the thermal properties of the composites and result in the smaller enthalpy. Perhaps fast heating and 
cooling rates of 10 k·min-1 make the OAD of the composites in the inner pore of bentonite networks 
fail to fully melt and crystallize. Extra measurements are then completed at a lower heating and 
cooling rate of 2 k·min-1. Figure 4(a) and (b) show that the thermal behaviour of composited PCMs at 
the heating and cooling rates of 2 k·min-1 is close to the former measurements. Onset melting (Tmo), 
degree of supercooling and phase change enthalpy only have a little change. Therefore, the speed of 
heating and cooling has moderate effect on the thermal behavior of the composites. 

Table 2. Thermographic data of OAD and OAD/ bentonite composited PCMs. 

samples 
10 k·min-1 2 k·min-1 

Tmo 
(°C) 

ΔHm (J 
g-1) 

Tco 
(°C) 

ΔHc (J 
g-1) 

Tmo 
(°C) 

ΔHm (J 
g-1) 

Tco 
(°C) 

ΔHc (J 
g-1) 

pure OAD 101.2 372.7 89.1 362.0 100.2 371.9 90.4 363.2 
ss-sample I 101.2 287.7 91.0 286.7 99.6 291.0 93.4 290.8 
ss-sample 
II 

100.6 267.9 91.0 261.3 99.1 266.1 92.8 263.1 

ss-sample 
III 

100.4 255.4 90.4 251.0 98.8 250.9 92.6 249.7 

ss-sample 
IV 

99.5 205.8 90.0 202.5 98.2 201.0 91.5 195.8 

We compare the thermal properties of the prepared composite PCM in this study with other 
composite PCMs in the literatures in table 3. It can be remarkably noted that the prepared 
OAD/bentonite composite PCM has high latent heat and appropriate phase change temperature. It 
indicates that the prepared composite PCM has good thermal energy storage potential. 

 
Figure 4. DSC thermograms of OAD and OAD/bentonite composited PCMs with the different amount 

of OAD components  
(a) heating process at a rate of 2 k·min-1, (b) cooling process at a rate of 2 k·min-1. 
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Table 3. Thermal characteristics of some composite PCMs in literature. 

Material/mass/% Melting point 
(°C) 

Latent heat 
(J·g-1) 

Reference

Myristic acid (50%)/bentonite (50%) 53.2 54.5 [20] 
Capric-myristic acid (20 %)/vermiculite (80%) 19.7 27.0 [26] 
PEG (45 %)/diatomite (45 %)/EG (10 %) 27.7 88.2 [27] 
CaCl26H2O (50%)/EG (50%) 29.9 88.5 [28] 
Paraffin (72 %)/SiO2 (20.8 %)/EG (7.2 %) 27.7 104.4 [29] 
Paraffin(60 %)/HDPE(15 %)/(APP/PER/MA)25 % 51.7 81.5 [30] 

3.4.  Thermal stability of the OAD/bentonite composite PCMs 
The OAD and the various OAD/bentonite composites are verified using thermogravimetric (TG) 
analyses in order to understand the thermal stability of them. Figure 5 shows TG curves of pure OAD 
and the composite PCMs. As can be seen from the curves, the mass loss of OAD and the composites 
starts at 70 °C and ends at 92.6–100.0 °C due to the degradation of crystal water in OAD. With the 
increase of the bentonite content, the mass loss becomes smaller and mass loss rate of composites also 
becomes lower when temperature is under 80 °C. It implies that the interactions between OAD and 
porous materials can provide composited PCMs with the good structure stable properties. 
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Figure 5. TG curves of OAD and the composites. 

4.  Conclusions 
In this paper, the ss-PCMs composed of bentonite and OAD are prepared by a direct blending method. 
According to the results of SEM and TG, when the weight percentage of OAD in the composites is 
83.3 wt.%, it can be found that OAD is preferably coated with bentonite. DSC data show a continuous 
lowering of the OAD melting point and phase change enthalpy with increasing bentonite content. 
According to the FT-IR results, interactions between OAD and bentonite, such as the capillary force 
and the hydrogen bonding, result in the confine crystallization process. OAD/bentonite composite with 
mass fraction of 83.3 wt.% OAD is promising candidates for heat storage application due to its 
moderate melting temperature, significant latent heat storage capacity and form-stable property. 
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