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Abstract. The formations type of solar radio bursts can be known base on the frequency range
that is detected. The CALLISTO system works with a wide band of the frequency making it
possible to detect several types of solar burst. Indonesia exactly at Sumedang, CALLISTO
system detected the formation of solar radio bursts forms of type II for the first time on 5
November 2014. On the other side, CALLISTO spectrometer detects and traces the
phenomenon of CME (Coronal Mass Ejections) which causes the solar radio burst type II
occurrence. In this paper will be calculated frequency drift rate during the occurrence of solar
radio bursts of type II phenomenon on 4th November 2015 at 03:30 UT. The results of these
calculations will be discussed as a related study of drift rate during the phenomenon of burst
type II radio bursts associated with CME. The obtained drift rate during the solar radio bursts
events above 2.8 MHz / s with low drift rate so that the speed of the CME that occurred only
about 790 km / s as shown from LASCO.

1. Introduction
In the field of radio astronomy, solar radio burst observation using low spectral range instrument and
low spatial resolution can provide a crude spectrum of the light curve of whole flares and Coronal
Mass Ejections (CMEs) which may consist of many sources with different characteristics. This is also
to be one of the important role in monitoring the space weather. In related cases, solar radio burst type
III plays a fundamental role in solar burst studies [1]. This is true not only in the determination of solar
radio burst type II, but the types of other solar radio bursts can also specify an important role in space
weather conditions. Like the same with solar radio burst type II in which the formation is influenced
by the bursts of electron acceleration during coronal outward propagating shock front [2]. Solar radio
burst type II were firstly identified [3] and is also observed as well as their classification as broadband
[4]. The importance of the event is as an early indicator of the CME-driven shock. By taking the
pattern of decreasing frequency of the signal, the motion of the shock can be observed. Shock
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generated by CME of type II radio bursts in the corona and in the interplanetary medium (IP), termed
as metric and interplanetary type II bursts [5].

The CALLISTO spectrometer is a programmable heterodyne receiver built in the framework of
IHY2007 and ISWI by former Radio and Plasma Physics Group at ETH Zurich, Switzerland [6]. The
main applications are observation of solar radio bursts and RFI-monitoring for astronomical science,
education and outreach. The instrument natively operates between 45 and 870 MHz using a modern,
commercially available broadband cable-TV tuner CD1316 having a frequency resolution of 62.5
KHz. The data obtained from CALLISTO are FIT-files with up to 400 frequencies per sweep. The
data are transferred via a RS-232 cable to a computer and saved locally. Time resolution is 0.25 sec at
200 channels per spectrum (800 pixels per second). The integration time is 1 msec and the radiometric
bandwidth is about 300 KHz. The overall dynamic range is larger than 50 dB. For convenient data
handling several IDL- and Python-routines were written.

Many CALLISTO instruments have already been deployed, including: 5 spectrometers in India (2
in Ooty, 1 in Gauribidanur, 1 in Pune, 1 in Ahmedabad), one in Badary near Irkutsk, Russian
Federation, two in South Korea, three in Australia (Perth, Melbourne and Heathcote), two in Hawaii,
two in Mexico, one in Costa Rica, two in Brazil, three in Mauritius, 5 in Ireland, one in Czech
Republic, two in Mongolia, four in Germany, two in Alaska, two in Kazakhstan, one in Cairo, one in
Nairobi, one in Sri Lanka, three in Trieste, one in Hurbanovo/Slovakia, two in Belgium, two in
Finland, 8 in Switzerland, one in Sardinia, 4 in Spain, 5 in Malaysia, 3 in Indonesia, one in
Scotland/UK one in Roztoky/Slovakia, one in Peru, one in Rwanda, one in Pakistan, 2 in Denmark,
one in Japan, one in South Africa, two in Greenland, two in Austria and one in Uruguay (see figure 1
). Through the IHY/UNBSSI and ISWI instrument deployment program, CALLISTO is able to
continuously observe the solar radio spectrum for 24h per day through all the year. All CALLISTO
spectrometers together form the e-CALLISTO network. CALLISTO in addition is dedicated to do
radio-monitoring within its frequency range with 13'200 channels per spectrum. The frequency range
can be expanded to any range by switching-in a heterodyne up- or a down-converter.

Instrument deployment including education and training of observers was financially supported by
SNF, SSAA, NASA, Institute for Astronomy and North-South Center of ETH Zurich and a few
private sponsors.

Figure 1. Map of current distribution of CALLISTO instruments in September 2016. Red
triangles: locations provide data, orange star: locations do not provide data yet/anymore.

LAPAN (the National Institute of Aeronautics and Space) has some equipments to observe
phenomena that occur on the sun, such as an optical telescope and radio spectrograph. Both of these
instruments have been installed and operated in Sumedang observatory (6.91oS, 107,84o E) as one of
the locations solar observations in Indonesia. Then around mid of July 2014, LAPAN also has
installed a solar observation equipment system known as CALLISTO (Compound Astronomical Low-
cost Low-frequency Instrument for Spectroscopy and Transportable Observatory) spectrometer to
monitor solar activity. This equipment uses a set of 21 elements of log-periodic antenna which capable
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to detect radio signals in the frequency range of 45 MHz -870 MHz. In the operation technically,
particularly in the selection of frequency range to be received is based on the measurement of Radio
Frequency Interference (RFI) around the site for optimum solar radio observations, so CALLISTO
spectrometer then operated on two (2) separate frequency range of 45-80 MHz and 180-450 MHz.
Detailed explanation of RFI measurement using CALLISTO installed in Sumedang [11].

Since 2014, LAPAN has been operated CALLISTO and develop three chain CALLISTO
observation network covering 14 h daytime of observations time. The first location, CALLISTO was
installed at Sumedang, West Java (6.91oS, 107,84o E), the second CALLISTO was installed at eastern
of Indonesia, Biak Island, Papua (6.9ºN, 107.84 ºE), and the newest CALLISTO had been installed at
Tomohon, Manado, North Sulawesi (1.288394U, 124.913566E). The development of CALLISTO
system with hardware configuration had been described briefly in [7], [8] and [10].  During the
operation period the CALLISTO installed in Indonesia observed multiple Radio burst Type II.
Indonesia exactly at Sumedang, CALLISTO system detected the formation of solar radio bursts forms
of type II for the first time on 5 November 2014 at 09:43 UT [9] and for the second time on 4
November 2015 at 03:30 UT. On the other side, CALLISTO spectrometer detects and traces the
phenomenon of CME (Coronal Mass Ejections) which causes the solar radio burst type II occurrence.

In this paper will be calculated frequency drift rate during the occurrence of solar radio bursts of
type II phenomenon. The results of these calculations will be discussed as a related study of drift rate
during the phenomenon of burst type II radio bursts associated with CME. The obtained drift rate
during the solar radio bursts events above approximately 3.2 MHz / s with low drift rate so that the
speed of the CME that occurred only about 376 km / s as shown from LASCO coronagraph.

2. Coronal Mass Ejection
A coronal mass ejection called as CME is unusually large phenomena that release a magnetic field and
plasma from the solar corona. The event is being classified as Type II that causes of solar burst [12].
The CMEs generated a shocks wave as solar wind that can be inferred from type II radio bursts in the
IP medium and in the corona which are termed as metric and interplanetary type II bursts, respectively
[13]. The shock wave is an observable change in coronal structure that occurs on a time scale either in
a few minutes or several hours and can be observed in coronagraph imagery. Its massive burst of
shock wave and magnetic fields can rise through above the solar corona which possible to trigger main
disturbances in the magnetosphere of the Earth [14]. Keeping consistent about the availability of free
energy in the active region makes the speed of CMEs may not be higher than 3000 km/s [15]. The
mechanism of the emission of plasma produce a huge plasma clouds of CMEs to leave the Sun within
large scale density wave ejections converted into radio waves escaping out into the space toward and
may enter the Earth and generate a geomagnetic storm after a few hours or days from the first shock or
emission [16]. Basically, the changes of the electron density may vary the emission time duration [17].
Theoretically, solar activity level can be determined by solar radio burst type escape from the Sun
[18]. Solar radio burst type II is rare comparative and has small of rate occurrence due to slow drift
from high to low frequency in spectrum of radio electromagnetic. However, the frequency range of the
emission can drift in the scale of hundreds of megahertz. Generally, the burst begins with fundamental
and second harmonic simultaneously [19].

3. Solar Radio Burst Type II and Its Drift Rate
Figure 2a shows the event of solar radio burst type II detected by CALLISTO spectrometer at low
frequency. The frequency drift rate of solar radio burst is a different of the frequency peak per unit
time. It can be determined by taking both end and start time seen figure 2c and frequency of the solar
radio burst type II seen in figure 2b. We use the 3rd order of curve fitting technique to fit the blue curve
in figure 2c as the mean value of signal strength profile in every time scale. The estimation of both
start and end time of solar radio burst even was derived by taken the absolute difference of each
values. The frequency difference during the solar burst even can calculated by using the minimum and
maximum frequency on the green line in figure 2b where the blue and the red curves shows the
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maximum value of signal strength profile in every frequency scale and its curve fitting based on the 3rd

order polynomial fitting respectively. The drift rate of solar radio burst is expressed as equation (1):= (1)
Equation (1) shows that the absolute value of rate is straight related to the frequency displacement

where fa is frequency of end time, fb is frequency of start time, ta is end time, tb start time. Dynamic
spectra of solar radio burst type II discovered as slowly drifting bands, often in pairs differing in
frequency by a factor ≈ 2. They were quickly interpreted in terms of coronal shock wave accelerating
electrons, driving Langmuir waves near the electron plasma frequency fp and 2 fp. This type II bursts
was definitely incorporate with Coronal Mass Ejections (CMEs), travelling shock waves, reflected
electron, Langmuir waves and radiation approaches fp and 2 fp. Inner corona of Sun presents an
evolution of the CMEs. It undergoes a rapid acceleration in the beginning, after it starts from static as
it erupts and reaches a maximum acceleration within the inner corona before being controlled by the
aerodynamic drag. Langmuir waves starts from a disturbance (plasma) in the form of a longitudinal
(electrostatic wave) that propagates in the plasma due to variations in the plasma's electron density.
Specifically, Langmuir waves are collective oscillations of inhomogeneous bunches of electrons
displaced from their natural equilibrium, in which the inertia of the relatively massive ions serves to
establish an electrostatic restoring force that tries to bring the electrons back to their equilibrium
positions.

4. Systems Configurations and Observations Methods
The whole CALLISTO system divided into two location indoor and outdoor devices as its function.
The antenna and amplifier and filter devices as signal conditioner component placed in outdoor. The
CALLISTO spectrometer and PC placed inside the control building. The geographic coordinate of the
observation locate in Sumedang, Indonesia at (6.91oS, 107,84o E) that covered the range of frequency
from 45-870 MHz [7, 9, 10].

On the other hand, due to constrain of the interference factors, the range of 45 MHz till 90 MHz
had been chosen as selected data. The output of CALLISTO returns a standards FITS file format
which describes a 2D diagram – frequency versus observation time, hence it is hard to determine the
types of solar flare. Therefore, it needs to process the image to get a clear diagram that explain a
specific radio signature of flare or CMEs.

Globally in the world, there are several CALLISTO spectrometer that has been successfully
detected this kind burst between 03:30-03:36 UT on 4th November 2015 such as ALMATY
Kazakhstan, GAURY India, KASI Korea, MRT1-3 Mexico, OOTY India and SSRT Siberia. Our
CALLISTO in Sumedang also detected this burst at the same time. Using the data, we focus on the
frequency range between 45 – 80 MHz seems this is the best range with a minimum of Radio
Frequency Interference (RFI) [11]. According to the data, the burst is occurred within around four
minutes.
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5. Result and Discussion

(a) (b)

(c)

Figure 2. Solar radio burst type II detected in Sumedang, Indonesia on 4th November 2015 at 03:30
UT

Figure 3 shows the CMEs detected by Large Angle and Spectrometric Coronagraph (LASCO). The
CMEs speed needs to exceed the characteristic speed before it can produce a shock, and the
combination of CME acceleration and the rapid change in the fast mode speed produces possibilities
for shock formation and decay. The drift rate frequency of type II bursts in the solar radio dynamic
spectra are related to the speed of the shock that produces the bursts and the density gradient in the
ambient medium. By using equation (1), drift rate calculated was 2.8 MHz/s.

The CME height is to be the same as the shock height and the type II burst height. This is strictly
not true because the shock is expected to be located ahead of the CME and the type II burst is located
at the shock front. The frequency drift rate of the burst is related to the shock’s velocity. The slow drift
rate determines the lifespan for the particular solar radio burst type II. With a slow drift rate of 2.8
MHz/s, it has only short lifespan. The exciter of the type II burst is a shock wave (independent of any
shock which may or may not have been associated with the earlier transient mass motion itself) which
is generated at the site of and simultaneous with the impulsive phase of flare. Fast and wide CMEs do
not drive shocks or they drive weak shocks that do not produce detectable radio emission. The X-ray
region observation has a lot of advantages in the sense of observing the solar activity. This short
wavelength can provide a starting point of the eruption. Then, it can show the major percentage of
energy of the explosions. The CMEs characteristics in x-ray regions can provide a finding at early
stage of the phenomenon as it has a short wavelength in the electromagnetic spectrum.
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Figure 3. CMEs detected by Large Angle and Spectrometric Coronagraph (LASCO)

Figure 4 shows the details from National Oceanic and Atmospheric Administration (NOAA) were
starts with Space Weather Message which issued an ALERT: activity increased to moderate levels
(R1-Minor) on 04 November. At 04/0326 UTC, flare production with an associated Type II radio
sweep. Wind parameters observed a rapid increase in winds speeds to an average of about 400 km/s
with a peak of near 790 km/s early on 04 November. This event also produced an associated partial-
halo coronal mass ejection (CME), first observed in LASCO C2.
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Figure 4. X-ray region of Space Weather Alerts and Warnings Timeline from National Oceanic
and Atmospheric Administration (NOAA)
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Figure-5: The velocity distribution of CMEs at the first stage (left) and at the during explosion (right)
from LASCO or SECCHI.

Figure 5 shows the velocity distribution of Coronal Mass Ejections at the first stage and during the
explosion. As can be seen in Figure 5 left side, there is clearly a beginning of the evolution of CMEs
explosion. The structure of CMEs tends to be formed. The velocity also starting to increase from 300
km sec-1. It should be noted that this evolution occurred within a few minutes with a complex
mechanism that not easy to be understood. This means that the tendencies of a huge explosion are very
high and could be dangerous to the magnetic field of the Earth. This is a motivation for us to know
more detail in understanding the mechanism of the explosion.

Here, we used the data from LASCO2 to obtain a clearer picture on the range of distribution of the
velocity of the CMEs. During that event, CMEs velocity also reached from 350-1800 kmsec-1. It
shows a high acceleration of the particles from the thermal radiation. This parameter provided an alert
with Sun’s activity. The potential of a big explosion of CMEs during that period is considered very
high.

6. Conclusion
CALLISTO spectrometer installed in Sumedang, Indonesia had detected the solar radio burst type II
due to CMEs on 4th November 2015 which has low drift rate during the moment was around 2.8
MHz/s and the CMEs velocity was just about 790 Km/s according to the NOAA space weather alert.

Acknowledgment
We are grateful to Indonesian National Institute of Aeronautics and Space especially in the Space
Science Centre for all the supporting this work. Also thanks full for all of the member of staff who
persistent in made the observation of CALLISTO and continuity of CALLISTO data available.

References
[1] M R Kundu 1969 Solar Radio Astronomy (New York:Willey–Interscience)
[2] Gopalswamy N, Makela P, Xie H, Akiyama S A Y 2009 CME interactions with coronal holes and their

interplanetary consequences J. Geophys. Res.
[3] Payne-Scott R, Yabsley D E, Bolton J G 1947 Relative times of arrival of bursts of solar noise on

different radio frequency nature 160 256-257

8

1st Annual Applied Science and Engineering Conference                                                                  IOP Publishing
IOP Conf. Series: Materials Science and Engineering 180 (2017) 012048    doi:10.1088/1757-899X/180/1/012048



[4] Boischot A 1957 Characters of a type of radio emission associated with some solar flares C. R.
Acad. Sci. 244 1326

[5] Mujiber Rahman A, Umapathy S, Shanmugaraju A 2012 Moon, Solar and interplanetary
parameters of CMEs with and without type II radio bursts Advances in Space Research 50
516-525

[6] Benz A O, Monstein C 2005 CALLISTO - A new concept for Solar Radio Spectrometers Sol.
Phys. 226 143

[7] Manik T, Sitompul P, and Prabowo D U 2014 Development of Space Weather Observation
System in Radio-Frequency-Based Using CALLISTO Proceeding of 3rd International
Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications
(ICRAMET) 89-93

[8] Manik T, Sitompul P, and Prabowo D U 2014 Establishment of Solar Radio Emission
Monitoring System based on CALLISTO Proceeding of The 6th Indonesia Japan Joint
Scientific Symposium (IJJSS) 240-246

[9] Manik T, and Sitompul P 2015 Observation of Solar Radio Burst using CALLISTO
Spectrometer in Indonesia Proceeding of National seminar on Atmospheric and Space
Sciences 195-205

[10] Manik T, Sitompul P, Batubara M, Kurniawan A, Tarigan M, Mumtahana F, Robiana Y, and
Dirgantara Y 2015 Development of Space Weather Observation System based on Radio
Frequency using CALLISTO Progress Report of 2015 Space Science Center Research
Program

[11] Manik T, Sitompul P, and Monstein C 2015 Radio Interference Measurement for Optimum
Solar Radio Observation using CALLISTO Spectrometer at Sumedang Indonesia
Proceeding of The 4th International Symposium for Sustainable Humanosphere (ISSH), A
Forum of Humanosphere Science School (HSS) 77-86

[12] Gopalswamy N et al 2009 Relation between type II bursts and CMEs inferred from STEREO
observations Sol. Phys. 259 227-254

[13] Mujiber Rahman A, Umapathy S, Shanmugaraju A 2012 Moon, Solar and interplanetary
parameters of CMEs with and without type II radio bursts Advances in Space Research 50
516-525

[14] Mann T C G, Aurab H 1994 Characteristics of coronal shock waves and solar type II radio
bursts, (1994).

[15] Gopalswamy N 2005 Coronal mass ejections and other extreme characteristics of the 2003
October–November solar eruptions Journal of Geophysical Research 110

[16] Marsh K A, Hurford G J 1982 High Spatial Resolution Solar Microwave Observations Ann.
Rev. Astron. Astrophysics 20 497

[17] Hamidi Z S, Monstein C, Shariff N N M 2014 Radio Observation of Coronal Mass Ejections
(CMEs) Due to Flare Related Phenomenon on 7th March 2012 International Letters of
Chemistry, Physics and Astronomy 11 243-256

[18] Gopalswamy N, Kaiser M L, Thomson B J, Burlaga L F, Szabo A, Lara A, Vourlidas A,
Yashiro S, Bougeret J L 2000 Radio-rich Solar Eruptive Events Geophys. Res. Lett 27 1427-
1430

[19] Hamidi Z, Shariff N, Monstein C 2014 Fundamental and Second Harmonic Bands of Solar
Radio Burst Type II Caused by X1. 8-Class Solar Flares International Letter of Chemistry,
Physics and Astronomy 33 208-217

9

1st Annual Applied Science and Engineering Conference                                                                  IOP Publishing
IOP Conf. Series: Materials Science and Engineering 180 (2017) 012048    doi:10.1088/1757-899X/180/1/012048


