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Abstract. The analysis of rotational speed reduction methods for alternating current electric 
motors are given, assigned to low-speed electric drives of various power levels. The integrated 
classification of electric machines of well-known types is given, the rotational speed reduction 
method being used as the basis. The main advantages and disadvantages, defining perspectives 
for the application in various low-speed electric drives, are explained. The approximate bounds 
of engineering expediency of the applications of the motors are given for obtaining certain 
assessments in selection of a type of the drive motor. 

1. Introduction 
Growing demands for low-speed electric motor drives of various power levels, intended for various 
applications in machinery, have drawn special attention to up-to-date low speed a.c. machines. 
Although a great number of investigations have been devoted to research and development of the 
abovementioned machines, the working-out of recommendations on high-torque low-speed electric 
machine application were not considered in a proper way. So we will first consider the classification 
of the above-mentioned class of machines, as well as the prospects of application in the high-torque 
electric drive. 

2.Classification 
It has been found expedient to apply the principle of obtaining a reduced rotational speed of the output 
shaft as the basis for classification of low-speed high-torque a.c. machines (Figure 1). 

 
Figure 1. The classification diagram of low-speed  

high-torque electric motors. 
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In accordance with the given integrated classification, all the polyphase low-speed machines can be 
divided into two groups: geared motors and gearless motors. 

Geared motors are specified by reduced angular velocity ω2 of the output shaft, compared to 
angular velocity ω1 of the main harmonic term of the magnetic field, the power being a source of 
conventional frequency. In connection with this, the reduction factor is k = ω2 / ω1 > 1. 

Based upon the rotational speed reduction principle, geared electric machines are divided into 
motors with mechanical reduction, motors with electric reduction, motors with electromechanical 
reduction and motors with electromagnetic reduction. 

Gearless low-speed electric machines (k = 1) are divided into circular stator motors and arc-stator 
motors [1], both types being fed from conventional frequency sources. The rotational speed reduction 
in arc-stator motors is achieved not through an increase of pole quantity but through the lay-out of the 
stator winding over a part of a circle. Hence, the power of the above-mentioned motors is substantially 
lower than the power of circular-stator motors, their low rotational speeds being equal. Therefore, arc-
stator motors are basically designed for relatively low torques, and the application of the latter is 
effective in electric drives of the machines wherein the connection of the electric machine with its 
actuator is considered to be expedient. Hence, we consider exclusively arc-stator gearless motors as 
the most general case for multipolar electric machines. 

It should be noted that the consideration of the above-mentioned low-speed electromechanical 
systems as cascaded ones, as well as the application of the multi-rotor motors, etc., presents a definite 
problem because of the variety of the effectiveness estimate criteria. 

We will analyze the potentialities for classification principles of achieving the low rotational speed 
of the а.с motor output shaft (from the point of view of the potential use in high-torque motor drives). 

3. Motors with reduction 
A mechanical reduction gear extensively applied in a.c electric drives [2, 3] is the simplest way of 
achieving a low rotational speed for the actuator. In so doing, a reduction gear is built in the electric 
machine body or is located outside, the reduction factor of the above-mentioned motor being equal to 
reduction gear ratio i (k = i) and being varied within certain limits depending on a reduction gear type 
used. 

The rotational speed reduction principle consists in feeding an electric machine from a certain 
dedicated electric power source with frequency f0 (the latter being a connector between the motor and 
the power network), but not from a conventional frequency source. The necessity of a special source is 
a factor associated with the main disadvantage of a motors of the above-mentioned group and limiting 
their application. 

Low frequency (in comparison to conventional frequency f) motors are excited by the reduced 
frequency current and have reduction factor k = f / f0. The frequency converter transmits the required 
full power to the above-stated electric machine. 

Well-known «double-powered» motors (slip-ring motors) are defined by reduction factor 
k = f1 / (f1–f2) where f1 and f2– voltage frequencies feeding the stator and the rotor. Besides, contactless 
motor drives with slip rings are well known [4], two separate windings of different poles p1 and p2 
being dropped in stator slots. The above motor reduction factor is defined by k = f1(p1+p2) / p1(f1–f2). 

The principle of electromechanical reduction of the rotational speed is based on the integration of a 
mechanical reduction gear box with the electromagnetic portion of the motor [5, 6]. The maximum 
reduction factor for the above-mentioned machines is estimated roughly as 100-5000. As we know, 
there are two main types of motors based on the above-mentioned principle. 

In the rolling rotor machine, the rotor axis rotates about the stator axis of symmetry in synchrony 
with the field. The reduction factor is k = D2/(D1–D2), where D1 and D2 are the stator bore diameter 
and the rotor bore diameter, respectively. 

The wave-rotor motor (where a wave drive is physically integral with the electric machine) features 
reduction factor k = z2 / (z2–z1), where z1, and z2– teeth numbers (teeth quantities) of rigid and flexible 
gear rings in the stator and the rotor. In spite of certain advantages, the above-mentioned motors are 
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currently not produced (with a relatively low torque), that is caused by design complexities and 
difficulties in manufacturing of an elastic rotor of the required core thickness. 

The motors with electromagnetic reduction operate by the principle of magnetic flux amplitude 
modulation [7, 8]. Taken together, they are divided into excitation winding (active) motors and motors 
without the excitation winding (reactive motors). 

The reduction factor for an active motor is k = z2 / p1, where z2–the number of rotor teeth, p1– the 
number of stator winding pole pairs. 

The reduction factor for a reactive motor is defined by k = z2 / (z2–z1) , where z1 and z2 – the number 
of stator and rotor teeth, respectively. 

The Megatorque high-torque a.c. machines with actuators produced by Motornetics (USA) are 
included into the above-mentioned class of low-speed electric machines. The above-mentioned motors 
comprise inner and outer stators with open poles (salient pole stators), the teeth being located over the 
pole pieces, and a thin ring rotor ― with a low moment of inertia. Other designs are known as well, 
e.g. a low-speed machine [9]. 

The maximum reduction factor of motors with electromagnetic reduction is estimated roughly as 
50-100. The motors based on two of the above-mentioned reduction principles are also available. 

4. Gearless motors 
The low rotational speed can be obtained at the expense of multipolar winding arranged over the 
stator. The versions of winding arrangements are thought to be the most practical in providing a 
maximum permissible low-speed: with slot numbers for a pole and for phase q ≤ 1. 

It is a fact that value q (according to the rules of symmetrical stator winding arrangement) cannot 
assume value q ≤ m–1, where m – the number of phases. Whenm–1 < q < 1, the MMF winding curves 
include a wide range of relatively practically expressed harmonic components, the majority of the 
latter are of prohibitively high value, as research indicates. The above-stated fact causes a rise of 
differential dissipation, an increase of the complementary losses level, and thereby an efficiency 
decrease; it causes parasitic electromagnetic moments as well as noise and the vibration rise. 

Our analysis shows that when m–1 < q ≤ 1, the machine with stator windings at q = 1 and with slot 
skewing features the best properties. Yet the diameter of the machine is rather large, which is 
impossible to tolerate according to operating conditions. Thus, if the traditional design motor is 
unrealizable, it isadvantageous to direct attention to a polystator machine offering a certain advantage 
of raising its low-speed level at the required diameter. The design of the gearless multipolar machines 
demonstrates certain characteristic properties [10], which will be considered in the part given below. 

5. Dimension relationships in multipolar machines 
We will first consider the main overall dimensions in the multipolar motors. As theoretical 
investigations show, the Esson constant in multipolar motors is two times lower in comparison to 
high-speed electric machines and can be approximatly estimated by value C ≈ 2.5 kVA∙min/m3, 
because of a relatively low induction value for a slot in a multipolar motor (Bδ < 0.55T) and more 
complicated cooling conditions in comparison to high-speed electric machines. We proceed from the 
fact that the outer diameter is defined as Da = (1.1-1.25)D, where D – the inner diameter of the core. 
Then the design length of the motor is determined by the following relationship: 

lδ=
(5.2–6.2)·10-4

Da
2

S
n

 ,                                                           (1) 

where S– the design power; n– the rotational speed. 
The third main dimension-air gap ofδ is taken on the basis of providing an allowable dissipation in 

a multipolar motor as well as by manufacturing standards. 
As it does so, δ satisfies the following relationship: 

10-3D < δ < 1.3(D/p)2,                                                          (2) 
where p – the number of pole pairs. 
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In certain cases of preliminary assessment, we need to define the maximum obtainable number of 
poles for the maximum allowable design outer diameter of the armature in a low-speed motor. That is 
done by means of relationship: 

p ≤ (3.2–3.7)∙10-3�Da.                                                       (3) 
The multipolar machine with a restricted diameter is characterized by relatively low pole pitch τ. In 

this situation, the core altitude of poles is to be extended for providing the required power level as well 
as design power factor cosφ in the synchronous electric motor. The required number of exitation 
winding turns is to be reduced in core slots, the conductor cross-sections being of a definite value. In 
this event, pole altitude h becomes objectionably high, the latter results in impermissible pole 
dissipation. Thus, the relative pole altitude should be restricted according to: 

h
τ

 ≤  0.3p �1+
p2

100
�� .                                                        (4) 

Relationships (1)-(4) have been approved by the practice of design and development of multipolar 
machines (p = 12-60) with certain limited cross-sectional dimensions (Da < 4m), the power range 
being S = 100-1000 kVA, and the required quantity estimates can be done. 

6. Conclusion 
The diagram roughly estimating the bounds of engineering expediency of low-speed a.c. electric 
motors is presented, based on the torque developed and the rotational speed of the output shaft 
(Figure 2), and on the strength of the analysis of the given design relationships and statistical 
processing of research data. The given diagram provides obtaining assessments essential for a choice 
of a low-speed gear electric motor type. In the diagram, a point located in areas a-e (or outside these 
areas) corresponds to each pair of required torque values T and rotational speed n. The location of the 
above-mentioned point outside the areas marked by dashed lines (by shading) is evidence that in 
developing the motor with a combination of these parametres, there are certain engineering problems. 
In search of alternatives, the area (that is the reduction type), located at a lower level, is preferable. 
Thus, if we are to provide rotational speed n = 100 r/min at torque T = 10 kN∙m, we get to the point 
overlapped with the c, d, e areas, simultaneously. Consequently, there is a scope for developing either 
an electric machine with mechanical reduction or an electric machine with electric reduction or a 
gearless multipolar machine. However, the principle of rotational speed mechanical reduction is more 
preferable from the point of view of maximum engineering and economical effectiveness in decision-
making. 

 
The data presented are averaged, but the allowance is made for the development of a low-speed 

electric drive on the basis of a high-torque motor, the limiting values of parameters lying outside the 
above-mentioned areas. 

Figure 2. Statistically averaged 
fields of application for various 
types of low-speed electric 
machines: a – motors with 
electromechanical reductions; b – 
motors with electromagnetic 
reduction; c – motors with 
mechanical reduction; d – motors 
with electric reduction; f – gearless 
multipolar electric motors. 
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