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Abstract. The paper presents computer simulation-based findings on the teeming speed effect 
on the formation of the ingot structure and inner defects. It is reported that for a top-poured 
ingot, the average teeming speed (1.4-2.0 m/sec) proves to be the best choice as it is 
accompanied with a decreased number of surface defects and an increased metal yield resulting 
from a decreased shrinkage cavity. 

1.  Introduction 
In spite of the fact that over the last years there has been a pronounced tendency in the growth of the 
amount of metal poured with continuous casters, up to 20% of metal is still top poured in ingots in 
electric furnace shops. Ingot quality is determined by such principal process parameters as teeming 
speed and melt temperature. The control of metal pouring temperature is more common compared 
with teeming speed control because there has not been much systematic research of the teeming speed 
yet. 

It is a well-known fact that the amount of surface defects in top-poured ingots depends upon the 
nature of the stream effluence; the latter, in its turn, is determined by the pouring nozzle shape and 
metal teeming speed [1-4]. The major effect of the steel teeming process on the metal quality is noted 
in the works [5-9], which demonstrate a noticeable impact of the teeming rate on ingot macrostructure 
formation as well as the location, distribution and size of shrinkage defects in the ingot. Somehow, 
nowadays it is not common to use teeming speed to control the formation of the ingot structure and 
ingot internal defects. 

Computer simulation is now widely commercially used not only to improve product quality, but 
also to cut down material costs and reduce new product development time [10, 11]. 

The paper is aimed at the analysis of the effect of steel teeming speed on steel ingot quality using a 
computer simulation of steel teeming and solidification processes. 

2.  Materials and methods 
A method based on two software applications was developed for the research: 

1) The LVMFlow application is designed to study metal convection flows and shrinkage defect 
location; a controlled volume method. The application makes it possible to visualize the process of 
mold filling with melt. The application was provided by the MKM Research and Development 
Shareholders Company Limited (the city of Izhevsk), Version No. 4.4r6 Time, License No. T0027. 

2) The ’Crystal’ computer simulation application developed to study the metal crystallization 
process with the finite difference method [12-15]. 
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3.  Results and Discussion 
The metal teeming speed corresponded to the commercial rates of the metal level rise in the ingot and 
ranged from 0.7 to 2.5 meters per minute. While performing computer simulation with the LVMFlow 
application, the speed was altered by varying pouring nozzle diameters from 15 to 65 mm: the low 
teeming speed (0.7÷1.3 m/min) corresponded to the diameters from 15 to 30 mm; the average speed 
(1.4÷2.0 m/min) corresponded to the diameters from 30 to 54 mm, and the high speed (2.1÷2.5 
m/min) corresponded to 45 up to 65 mm pouring nozzle diameters. In doing so, within each speed 
range, the effect of speed was studied at 0.1 m/minute intervals. 

When analyzing the effect of the teeming speed on the alteration of model ingot crystal zone 
dimensions and the degree of shrinkage defects in them, the method of finite differences and the 3D 
modeling option in the LVMFlow application were used. 

Since the main criterion for the top-poured ingot quality is the surface condition, it deemed of 
interest to evaluate the effect of the teeming speed on the spray process. When top pouring an ingot, 
spraying is the most intensive when liquid steel flow hits the ingot bottom. Consequently, the intensity 
of spray formation was assessed by the maximum elevation at which liquid metal drops rose from the 
ingot bottom at the beginning of teeming. 

While modeling the teeming process, the following parameters were analyzed: circulation flow 
distribution throughout the ingot mass and solid phase build-up time when the mold was 50% full and 
100% full. 

The effect of the teeming speed on the solid phase build-up rate was assessed both with the 
LVMFlow application and a mathematical calculation: 
 

Solid phase quantity = 100 % – Х %, 
 
where 100% is the quantity of both liquid and solid phases; X % is the liquid phase quantity. 

A comparative analysis of the effect of the teeming rate on the metal spray intensity at the 
beginning of pouring demonstrated that teeming at a low and a high speed intensifies the metal spray 
when a liquid steel flow hits the mold bottom; somehow, this phenomenon was not observed when 
pouring at an average speed. Figure 1 presents simulation results of spray types at the moment when 
the flow hits the mold bottom at various pouring speeds. 

The maximum spray (splashes formed at the height corresponding to ¼ of the mold height ≈ 400 
mm) was observed at the speed of 2.5 m/min. When poured at average teeming speeds, the spray was 
of the order of 70 to 120 mm, while at low teeming speeds, the spray varied from 60 to 150 mm. It is 
noteworthy that the maximum height of splash from the mold bottom was registered for the teeming 
speed of 1.1 m/min. 

 
Figure 1. The schematic of spray formation at various teeming speeds: a) drop formation at a low 
speed; b) a uniform filling of the ingot with the melt poured at an average speed; c) the intense 
spray when teeming at a high speed. 
 
When teeming at a low speed within the range of 0.7 to 1.0 m/min, a bad structure of the falling 

stream of metal was noted. The stream was characterized by loss of continuity and a distortion of the 
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flow structure. In addition, the low speed teeming results in heavy cooling of the melt: when the melt 
is poured into the mold, it loses part of it’s overheat. It leads to an intensive oxidation which results in 
the increased quantity of oxides and increased porosity. Starting from the speed of 1.2 m/min up to 2.0 
m/min, no intensive spray was observed due to the formation of a ‘protective cushion’ of the liquid 
metal in the mold bottom. 

It was demonstrated that after the mold was approximately 50% full, steel flows emerged and 
started to circulate throughout the metal until the completion of teeming (Figure 2). 

 
The teeming speed (metal rise in the mold), m/min 

 

0.7 ÷ 1.3 1.4 ÷ 2.0 2.1 ÷ 2.5 
50 % filling of the mold with the melt 

   
100 % filling of the mold with the melt 

   
* – color identification of the melt speed variation, cm/s  
Figure 2. Liquid steel flow distribution while filling the mold with the melt. 

 
The schematic shows that the intensity of liquid metal circulation flows notably increases with the 

rise in the teeming speed. When poured at a high teeming speed, the metal flow speed below the 
poured metal surface decreases approximately twofold when the stream reaches the mold bottom, and 
the stream diameter increases approximately by a factor of 1.5. 

When teeming at an average speed, two classical circulation zones emerge inside the mold: those of 
rising and falling streams flowing at a speed of about 1.25 cm/s. The rising streams take up nearly 2/3 
of the ingot cross-section and evenly rise from the bottom to the middle level. Starting from the middle 
level and up to the upper level, the flows chaotically mix up which might be caused by termination of 
teeming (stream effect) and the discard top effect. 

The penetration depth of the metal stream while teeming at a low speed (0.7-1.3 m/min) is 
insignificant because the stream possesses low kinetic energy and cannot penetrate deeply into the 
melt. The characteristic speed of the circulation contour is the lowest and on the average equal to 0.7 
cm/s. A low teeming speed results in a practically laminar flow of the melt, and in this case an upward 
and a downward flow circulation is observed. Based on speed color identifiers, the average value of 
the speed in this instance is 0.7 to 3.0 cm/s. 
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An increase of the teeming speed to 1.2 m/min leads to a more intensive flow circulation, and 
speed increases on the average to 6.0-8.0 cm/s (throughout the entire ingot). In doing so, the maximum 
speed is observed in the areas bordering on the mold walls (over 9.0 cm/s) and in the centre of the 
solidifying ingot within the lower and middle levels. 

The study of the teeming speed effect on the intensity of the solid phase growth revealed that 
within each range of speeds the build-up of the solid phase remains practically the same: the quantity 
of the solid phase evenly grows within equal time intervals.  

Somehow, the most intensive growth of the solid phase was observed in the low teeming speed 
group: for example, for the solidification time of 15 min, the solid phase quantity of 13 % 
corresponded to the speed of up to 1.3 m/min; for 8 % of the solid phase, the speed corresponded to 
the speed of up to 2.0 m/min; for 6 % of the solid phase quantity, the teeming speed was over 2.1 
m/min. These figures can be explained by a noticeable cooling action of the mold walls on the 
relatively small quantity of the melt teemed from small diameter pouring nozzles. Somehow, as the 
crystallized layer is building up, heat conductivity decreases; it reduces the quantity of the solid phase 
formed. In this case, the teeming speed does not affect the solidification time because, according to the 
simulation, the ingots fully crystallize within two hours after the completion of teeming. 

A 3D visualization of teeming and crystallization simulation using the LVM Flow application 
made it possible to locate and specify the typical dimensions of shrinkage defects in 4.5 ton ingots (see 
Figure 3). 

The simulation with metal teeming speeds of up to 1.3 m/min showed the shrinkage cavity 
penetrated into the chill below the upper level. At average speeds, the shrinkage cavity, as a rule, is 
located mainly in the hot top metal. The maximum quantity of defects in the axial zone was observed 
at the teeming speed of above 2.3 m/min.  

 
The teeming speed (metal level rise in the mold), m/min 

 

0.7 ÷ 1.3 1.4 ÷ 2.0 2.1 ÷ 2.5 
3Dmodel of a defective ingot 

   
Ingot longitudinal section 

   
* - color identification of the quantity of shrinkage defects in an ingot  

Figure 3. A typical location of the shrinkage cavity inside the chill in a 3D model and in the model 
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axial section. 
 

The metal teeming simulation results were used in the finite difference method to obtain data on the 
dimensions of typical structural zones for a 4.5 ton ingot; the data are presented in Table 1. 
 

Table 1.The length of structural zones and physical non-heterogeneity zones of model ingots 
poured at various speeds (finite difference method) 

Table 1. The length of structural zones and physical non-heterogeneity zones of model ingots 
poured at various speeds (finite difference method). 

Structural zone 
type 

Zone extension (width) * 

l, mm % of the ingot height or diameter 

teeming speed, m/min 

0.7 ÷ 1.3 1.4 ÷ 2.0 2.1 ÷ 2.5 0.7 ÷ 1.3 1.4 ÷ 2.0 2.1 ÷ 2.5 
Crust zone 14 11 9 2.2 1.74 1.42 
Columnar 
dendrites 81 75 70 12.8 11.5 10.8 

Equiaxial 
dendrites 135 141 137 21.6 22.38 21.3 

Sedimentation 
cone** 593 605 688 29.8 30.5 34.6 

Srinkage 
cavity** 339 309 358 15.1 11.0 18.1 

Axial 
sponginess 
zone ** 

369 351 468 18.6 17.7 23.6 

* structural zone extension was calculated as a mean value for the three levels 
**over the chill height 

 
 
The logging of the solid phase quantity data during solidification using the LVM Flow application 

and the measurement of solidified zone extension in solidified ingots using the ‘Crystal’ application 
showed that the crust thickness decreases by a factor of 1.5 with an increase in the teeming speed. The 
columnar crystal zone width decreases by a factor of 1.3 with the increase in the teeming speed, and 
the sedimentation cone height increases approximately by 1.6 %. 

The depth of the shrinkage cavity penetration into the chill as well as the extension of the axial 
sponginess zone are the shortest at the average teeming speed. It is noteworthy that the volume of the 
axial sponginess zone reduces to 0.2 %. The computer simulation results showed that the teeming 
speed alteration effects both the location and dimensions of shrinkage defects. 

4.  Conclusion 
Summing up, the control of the melt teeming speed is an important process parameter which can 
facilitate the production of ingots of the required structure with a convenient location of shrinkage 
defects and, thus, can improve the properties of the forgings produced. That is why, ingot quality 
control based on the properly chosen teeming speed is an important aspect of the ingot production 
process which does not require costly investment in the production process. 
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The use of various simulation models of steel teeming and crystallization combined with a 
metallographic study of the crystallized steel noticeably improves the predictive power of the models 
defect-wise; these defects can be eliminated in future by choosing optimal regimes of steel teeming. 
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