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Abstract. Cracks and delaminations are the common structural degradation mechanisms
studied recently using numerous methods and techniques. Among them, numerical methods
based on FEM analyses are in widespread commercial use. The scope of these methods has
focused i.e. on energetic approach to linear elastic fracture mechanics (LEFM) theory,
encompassing such quantities as the J-integral and the energy release rate G. This approach
enables to introduce damage criteria of analyzed structures without dealing with the details of
the physical singularities occurring at the crack tip. In this paper, two numerical methods based
on LEFM are used to analyze both isotropic and orthotropic specimens and the results are
compared with well-known analytical solutions as well as (in some cases) VCCT results. These
methods are optimized for industrial use with simple, rectangular meshes. The verification is
made based on two dimensional mode partitioning.

1. Introduction

It has been commonly known that in the scope of linear elastic fracture mechanics the J integral
remains a measure of resistance to crack growth equivalent to the energy release rate (ERR) G [1, 2].
Moreover, in ideally elastic brittle, as well as ductile-brittle materials with plastic zone at the crack tip,
the J integral is highly dependent on the loading mode. Calculating the different mode components of
J integral with good precision is therefore vital for correct design against fracture of structures,
including laminates. Despite the existence of analytic solutions in terms of both the J integral J [2, 3]
and the ERR G [4, 5], the numerical calculations based on FEM are still considered as the primary
efficient method for estimating values of J and G [6].

An important problem in the field of determining resistance to crack growth is estimation of mode
mixity for a given body—crack configuration. Complex two-dimensional cases of loading modes are
usually described using a relative percentage of the mode Il (shearing mode) to the total ERR (G, / G),
the so-called mode mix, where:

G=G, +G, (1.2)

The estimation of mode mix (the so-called decomposition or mode partitioning) has been the
subject of numerous scientific works of analytic character [2-5]. Subsequently, many works of
experimental nature have been conducted with the aim of verifying and comparing both methods, as
well as discovering their limits of applicability [3, 5]. This paper is aimed at presenting and comparing
numerical techniques which allow to calculate the J integral and its mode components. The results
obtained using these techniques will be compared against those acquired using analytic methods. For
detailed description of these methods, the readers are referred to [2, 3, 4, 6].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



ICCMPT IOP Publishing
IOP Conf. Series: Materials Science and Engineering 175 (2017) 012062 doi:10.1088/1757-899X/175/1/012062

2. Numerical mode partitioning — the J integral method
Numerical methods have found application in fracture mechanics analyses since FEM software came
into common usage. The J integral method uses the energetic contour path integral described as [1]:

ou,
J, = J{Wnl ~ 0 a—'ands (2.1)
K Xl
where:
o W= Iaijdgij — strain energy density function,
0
e n; —component of the outward unit normal vector in the j-th direction,

* Oy - element of the stress tensor,

e U, —component of the displacement vector in the i-th direction.

The J integral is a path integral over a scalar field along an arbitrary curve in n-dimensional space.
In fracture mechanics problems the integral defined in two and three-dimensional Euclidean space is
used. Another primary characteristic of the J integral is that it disappears when a path contour is
closed. Consequently, J may be considered a measure of a crack's existence inside the analyzed
contour. Additionally, J is an oriented integral — this last property together with the disappearance of J
along a closed contour imply that the J integral is path independent.

Under the assumptions of LEFM, equality of the two quantities: J and G is proven. This fact
together with the path independence property of the J integral cause J to be useful in analyzing non-
homogeneous structures with interfacial cracks. The energetic approach with the use of the path
independent J integral enables to bypass the singularity dominated zone in the vicinity of the crack tip
and the issues related to its existence [5, 7], particularly in terms of mode partitioning accuracy.

J, similarly to G, may be partitioned into mode | and Il (in a two-dimensional loading case),
corresponding to opening and shearing fracture. The quantities J, and J;, are obtained by partitioning
the terms under the integral sign into symmetric and antisymmetric components respectively [8]. The
equation (1.1) holds true also in case of the J integral.

3. Implementation of the J integral calculations

In the following section, two independent numerical techniques of calculating the J integral will be
introduced. The details of computational implementation will be given in terms of the complete
flowcharts of the methods’ algorithms. Although the algorithms may already be used in commercial
software environments, they have not yet been published to the best of the author’s knowledge. The
flowcharts are designed to be used as the basis for development of macros in typical parametric
languages, such as ANSYS APDL, however general purpose programming languages may also be
used if a FEM solution is known.

3.1. Direct integration method
The name direct integration was given to the algorithm in which an integration path is selected as a
sorted set of nodes of finite element mesh from a rectangular contour of predefined thickness t (see
Fig. 1), where t > 0. In practice, the cases with t equalling zero occur only when a mesh is regular.
Formulas describing the J integral and its components on separate respective segments of I can be
obtained using the definition (2.1) and the conventions depicted in Fig. 1. The trapezoidal rule is used
for calculating Riemann sums of the integrated functions between the nodes (endpoints of respective
partitions) of the integration contour (the (*) box, Fig. 3):

Jy =Jy +3As, (3N +IM) (3.1)
from which:
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o As, = |P| Pk| _|P| Pk—1| = |Pk—lPk| = \/(Xk - Xk—l)z +(Yy, — yk—l)z — length of a segment,

o JIM=w, (N)n, — o' (N U (N, )n; —value of the integrated function in k-th node.

While describing the direct integration algorithm it is worth noticing that, due to specifics of many
FEM software packages, it is possible to switch to the nearest node neighbouring the selected node
during the iteration process within the inner loop (which iterates over the nodes subscripted with the
letter k). This action is described by the condition (**):

P, :gogYa‘Pk (X+o,,y+0,)—PR (x)‘ =0 (3.2)

In general-purpose programming languages, this condition could be realized as a switch between
two points (array elements) sorted in ascending order of distance from the starting point P,

Yp [m=0
r ‘ : ) B _ I
ds =-dx — | »
h L
ds =dv
. B B Kl RN n
e =-1 v / _.‘P-____—' \ 1 TS 7
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=0 I 111
ny =-1 .
ds =dx T 3 4 4
Figure 1. Integration domain in direct method: Figure 2. Integration domain in EDI method:
division and convections coordinates

3.2. EDI integration method
Equivalent Domain Integral (EDI) is the name of a method, which invokes the divergence theorem to
convert a line integral of a vector field around a simple closed curve to a domain integral of this field's
divergence over the plane region bounded by this curve. By that means the J integral is calculated over
a certain compact domain, which consists of finite elements which form a ring around the crack tip.
The EDI method also introduces operations and symbols characteristic of a discrete space spread by
the finite element mesh [8, 9].

Fig. 4 describes the EDI algorithm as implemented in MATLAB environment. The algorithm is
executed as a post-processing phase after FEM calculations carried out in ANSYS Mechanical.

In Fig. 2 the use of a parent element coordinate system O&y is depicted. This system is defined in
general as curvilinear, with its origin at an element's geometric centre. The coordinates (&, #) are
selected (box (*), Fig. 4) so that the corner nodes are positioned in the following way (see Fig. 2):

LEm=C1) 5:(Em=>0-1)
3:(6m) =(=1-1) 7:(&m) =)

The coordinates of the even-numbered nodes are arithmetic means of the corresponding
coordinates of two neighbouring nodes. The local system utilizes Gaussian points, which are the roots
of a Gauss-Legendre polynomial, which in turn approximates the integrated function. The Gaussian
points are numbered using Roman numerals according to the convention in Fig. 2.

The sum of the integrated function's values at the Gaussian points forms a Gaussian quadrature of
the J integral's increment in an element [8, 9]. Using the Einstein notation this can be written as:

m=4 n=4
Ay = 3 W, S, —u,0,S  + WM —6,5,)S |det 3 (3.3)
m=1 n=1
The summation (3.3) takes place in the (***) box of the Fig. 4. The S function occurring in the
expression (3.3) is a polynomial function of two variables:
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S(é’n)zLiSi

where:
e L, —shape function for the i-th node of a given element;

e S, —value of S function in the i-th node.
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The S; values are set so that in the inner nodes of the contour ring (nodes numbered 3, 4, 5 according
to Fig. 2) the value of S is 1, while in the outer nodes (numbered 1, 7, 8) Sis 0. In nodes 2 and 6 the S
function takes arbitrary values from the interval [0, 1]. These values are selected in the inner loop of
the algorithm in Fig. 4 so that the condition (1.1) expressed in terms of J integral and its components is
met with predefined accuracy.

For the purposes of the EDI algorithm and its application, a type of mesh with two geometrical
parameters has been developed. Thanks to its simplicity, a derivative of any quantity in the direction x
at every Gaussian point may be calculated using the central finite difference formula. Therefore, the
values of derivatives are approximated with good accuracy and, at the same time, the distance between
the contour ring and the crack tip, as well as the number of elements forming the ring, may be
controlled. Obtaining the values of various quantities at Gaussian points may be achieved in most
FEM environments by turning off the extrapolation of the Gaussian point results to the nodes.

4. Verification and application of the J integral analyses

Verification of results of numerical analyses was conducted basing on loading tests (specimens) used
for evaluation of the critical ERRs in various modes of loading. All the specimens have geometries of
slender beams and remain under plane stress condition (width equalling 25.4 mm). The specimens’
models were built with the use of ANSYS Mechanical software. Material properties of the models
correspond to isotropic (steel) and unidirectional orthotropic (graphite/epoxy) material as described in
Table 1. Values of loads have been selected so that every test case remains in elastic strain regime.

Table 1.
Material Young’s Poisson’s | Loading value [N] Deflection [mm] Number | Ply thickness
type modulus [GPa] | ratio[-] | Fpcs | Fene | Faig | Upes | Uene | Usig | OF plies [mm]
isotropic E =209.86 v=0.33 |200 |2000 |1000 [2.185|3.8800.990| n=1 |T=4.8mm
(steel)
orthotropic | E = 146.86 vy =0.33 | 120 | 2000 | 800 |1.806 [2.470 (1.009 | n=16 |T;=0.32 mm
(CFRP) E, =10.62 vy, =0.33
E,=10.62 vy, = 0.33
110.2
1002 1002
69 85 ¥ F 68.5 ' F 68.5 [F A
X l X X
= [2) o—1 A
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Figure 5. Geometry of specimen, a. DCB, b. ENF, c. SLB

The Double Cantilever Beam (DCB) specimen was tested to verify element size independence of
the results. The verification proved positive with standard deviations of J: 18.763 J/m? (direct method)
and 24.364 J/m? (EDI) for isotropic, as well as 18.381 J/m? (direct) and 23.672 J/m? (EDI) for
orthotropic case. Expected values were 855.3 J/m® (direct), 858.212 J/m* (EDI) and 368.533 J/m?
(direct), 337.933 J/m* (EDI) respectively with the element’s size |, ranging between 0.08 mm and 0.24
mm for isotropic, as well as 0.08 mm and 0.32 mm for orthotropic case. A similar test has been carried
out on the End Notched Flexure (ENF) specimen with a non-linear simulation of contact between
elements on the opposite cracked legs. ENF solutions also appeared to be of little dependence on I..

The results of the two tests displayed pure mode | (DCB) and pure mode Il (ENF) loading as
expected, with roughly 1% and 99% of mode mix respectively. The result J,/J = 94% for the ENF
specimen calculated using the direct method can be seen as underestimated.
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The Single Leg Bending (SLB) test was performed to verify the mode prediction ability of the
tested methods in complex loading configuration. A mode mix of approx. 40% was calculated using
analytic methods. Fig. 7 illustrates changes of mode mix with increasing distance between the contour
path and the crack tip (increment of the parameter k) for constant l.. For both materials examined, the
Jn/J(K) curves appear to converge except for small oscillations. An exception is the EDI method,
which fails when 4-node elements are used for meshing. A big improvement comes after using
elements with mid-side nodes. The EDI solution for orthotropic specimen converges on the value of
41%, which lies between the two analytically predicted mode mixes. The solution obtained using
direct integration is lower, amounting to approximately 38%. It may be concluded that both numerical
methods estimate mode mixes accurately. Also, both numerical methods estimate the total value of J
to be 7.5% + 12% higher than analytic solutions. Similar results obtained using the well-known VCCT
method suggest a possible influence of FEM modelling on the analytic-numerical discrepancies.
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Figure 6. SLB test results: J total Figure 7. SLB test results: mode mix

5. Concluding remarks

In the present paper, the comparison between different methods which allow for the calculation of
energy release rate (ERR) and its mode partitioning was presented. The methods used were of both
analytic, semi-analytic and numerical origin. In the first part of the paper, the description of the two
numerical techniques was provided, which use the J integral approach to calculate the ERR. The
matter of numerical implementation in a typical FEM software of these techniques was also presented
in detail. In the second part of the paper, the results obtained using the two numerical techniques,
known as the direct integration method and the Equivalent Domain Integral method, were compared
using three typical types of specimens: the DCB, ENF and SLB. The analytic, semi-analytic and (in
some cases) VCCT solutions were considered as comparison criteria. The scope of the analysis (the
loads applied, the maximum deflection of the specimens) never exceeded the linear elastic fracture
mechanics (LEFM) criteria. The analysis allow for positive validation of the two numerical techniques
compared. The direct integration method seems to diminish the J,/J values in the whole scope of
integration contours considered. The direct integration results, however, are of less deviation and
converge faster than EDI counterparts. The matter of optimizing the integration algorithms for future
use in simple rectangular meshes remains forthcoming.
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