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Abstract. The paper discusses the calculation of the effective thermal and diffusion properties 

of metal matrix composites containing diamond particles. The effective properties are 

calculated using Maxwell homogenization scheme. We also establish cross-property 

connection between overall thermal conductivity and diffusion coefficient and illustrate it on 

example of Al\diamond composites.  

1.  Introduction 

The paper focuses on the problem of the effective properties - thermal conductivity and diffusion 

coefficient - of metal matrix composites containing diamond particles. Composites of this kind are 

widely used for thermal management of electronic components and it is necessary to know their 

effective properties, such as thermal and electrical conductivity, thermal expansion coefficient, 

diffusivity etc. However, some effective properties, such as diffusion coefficient, are more difficult to 

measure experimentally than thermal or electrical properties. In this paper, we propose a method for 

evaluation of the effective diffusion coefficient through the thermal conductivity measurements.  

2.  Property contribution tensors 

Property contribution tensors are used in the context of homogenization problems to describe 

contribution of a single inhomogeneity into the property of interest – it may be elastic compliance or 

stiffness, thermal or electrical conductivity, or diffusion coefficient [1].  

2.1.  Thermal conductivity problem 

In the thermal conductivity problem, the key quantity is the conductivity contribution tensor that gives 

the extra heat flux produced by introduction of the inhomogeneity into a material subjected to 

otherwise uniform field of temperature gradient. We assume that the background material of volume V 

having the isotropic thermal conductivity k
0
 contains an isolated inhomogeneity of volume V

1
 of the 

isotropic thermal conductivity k
1
. The limiting cases k

1
 = 0 and k

1
 = ∞ corresponds to an insulating and 

a superconducting inhomogeneities. Assuming linear relation between temperature gradient T  and 

the heat flux vector q per reference volume (Fourier law), for both constituents, the change in q in 

response to the presence of the inhomogeneity is given by 
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where the symmetric second-rank tensor K  is the conductivity contribution tensor of the 

inhomogeneity. 

This tensor for a spherical inhomogeneity is given by Sevostianov and Kachanov [2] 
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2.2.  Diffusion problem 

Diffusivity contribution tensor can be introduced by analogy with conductivity contribution tensors 

[3]. The homogeneous boundary conditions are assumed: the "remotely applied" concentration 

gradient, or flux of particles, would be uniform in absence of the inhomogeneity. Let, for example, the 

concentration gradient 0
Gc  be prescribed at the boundary of V. Then, the average over 

10= VVV   flux and concentration gradient are 
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Taking into account that 11 \=1

VV
cD J  and 00 \=0

VV
cD J , one can write 
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Introducing tensor A that expresses 1V
c  in terms of  G

0
: 
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c  (6) 

the latter expression can be rewritten as 
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The second term in the brackets represents the contribution of the inhomogeneity into overall 

diffusivity of the volume V and tensor H
D
 can be called the diffusivity contribution tensor.  

For a spherical shape, tensor A can be written as 
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and the diffusivity contribution tensor for a spheroidal inhomogeneity has the following form: 
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3.  Maxwell scheme 

According to Maxwell’s idea [4], we evaluate fields at far points in two different ways and equate the 

results. First, we evaluate this field as the one generated by a homogenized region Ω possessing the 

(yet unknown) effective properties. Secondly, we consider the sum of far fields generated by all the 

individual inhomogeneities within Ω (being considered as non-interacting ones). Equating the two 

quantities yields the desired effective property [5]. For the thermal conductivity problem, the result has 

the following form: 
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where P
Ω
  is the second-rank Hill’s tensor for domain Ω [6]. For isotropic composite 
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where parameter A depends on the shape and properties of the individual inhomogeneities. Thus 
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The effective diffusion coefficient is given by  
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where Q
Ω
  is second-rank tensor that reflects the shape of domain Ω. For a spherical shape of Ω  
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4.  Cross-property connections 

Comparison of equations (12) and (15) shows their complete identity. We now consider aluminum 

matrix composite with diamond particles in the context of hydrogen diffusion. For this system 

mKWk /2360  , mKWk /15001̀    , smD /10 270  , and 01 D . Solving (12) for the 

volume fraction of inhomogeneities and substituting it into (15), we can write the effective diffusion 

coefficient as a function of the thermal conductivity: 
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Figure 1 shows dependence of   00 DDDeff   on   00 kkk eff  . 
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Figure 1. Cross-property connection between effective diffusion 

coefficient and effective thermal conductivity of Al/diamond 

composite 

5.  Concluding remarks 

In this paper, we modelled effective thermal and diffusion properties of a particle reinforced 

composite. The effective properties are calculated using Maxwell homogenization scheme. We also 

established cross-property connection between effective thermal conductivity and diffusion coefficient 

and illustrate it on example of aluminum reinforced with diamond particles. 
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