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Abstract. The Rayleigh-Plesset-Scriven (RPS) equation representing the source of void 

production is coupled with the Reynolds (RE) and energy equations in a fully transient solution 

with feedback between these equations. Temperature effects are accounted for by using an 

energy equation integrated across the bearing film. Dynamic enlargement of the surface of each 

of the discrete bubbles forming the pseudo-cavitation zone is accounted for by introducing the 

surface dilatational viscosity term in the RPS equation; this represents a continuation of 

previous work by Snyder et al [1] that established parametrically the significance of the surface 

dilatational viscosity (k
s
=3.75*10

-3
 N.s/m) both in the development of the cavitation bubble 

and the formation and sustenance of the subcavitation tensile forces. The study presents the 

interlaced effects of residual fluid internal energy, eccentricity, angular velocity and heat 

transfer coefficient on the pressure and pseudo-cavitation development.  

Nomenclature 𝑐     Specific heat of oil ℎ, ℎ଴, ℎℎ   Heat transfer coefficient 𝐻     Thickness of thin film 𝑘     Thermal conductivity of oil ܲ, 𝐵ܲ, ܲீ , ௩ܲ  Pressure, total pressure inside the bubble, pressure of the gas, vapor pressure 𝑅ܲ , ∞ܲ    Pressure directly outside of bubble wall, and pressure in the liquid far from the bubble ܳ௚௘௡    Heat generation due to viscous dissipation ܳ௥௘௦    ܳ௚௘௡ less the amount of heat lost from convection to bearing components ܴ𝐵     Cavitating bubble radius ݐ     Time ܶ     Temperature of mixture ̅ݑ, ݔ Average velocity of mixture in    ݓ̅ − and ݕ − direction respectively  ௖ܸ௘𝑙𝑙    Volume of computational cell ݔ,  Spatial coordinates: along the unwrapped surface, axial 𝛼     Void fraction 𝛾     Surface tension of bubble 𝜀     Bearing eccentricity ratio    ݕ
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,ߤ ௦    Bulk dilatational viscosity, Surface Dilatational Viscosityߢ ,ߢ 𝑙ߤ , ,ߩ 𝐿     Kinematic viscosity of liquid (oil)ߥ .𝐵   Dynamic viscosity of mixture, liquid (oil) and bubbleߤ 𝑙ߩ ,  𝐵   Density of mixture, liquid and gas bubble respectivelyߩ

1. Introduction 
There is a plethora of literature treating pseudo-, vaporous and gaseous cavitation, a difficult and 

complex problem that requires an interdisciplinary approach to solution. There has been steady 

progress in the understanding of this problem, starting with the initial treatise of Osborne Reynolds [2] 

in 1886 and Sommerfeld [3] in 1904, to today’s state of the art which offers a multi physics model and 
numerical implementation (Someya [4], Natsumeda and Someya [5], Gehanin et al. [6, 7], Snyder et 

al. [1]). Early, nonconservative cavitation models were followed by mass conserving models, which 

assumed striated flows formed out of gas fingers interspersed with liquid regions extending across the 

clearance. In the last 75 years, numerous innovative analytical and numerical solutions, as well as 

seminal experimental findings were offered. In this context, the reader is further referred to the review 

publications of Dowson et al. [8], Brewe et al. [9], Braun and Hannon [10] and Snyder et al [1]. Zuber 

and Dougherty [11] in 1982 proposed a Reynolds equation (RE) that introduced a homogeneous two-

phase lubricating film mixture as the working fluid. Natsumeda and Someya [5] in 1987 also used the 

concept of a homogeneous two-phase flow RE coupled with the Rayleigh-Plesset-Scriven (RPS) 

equation as the void generation source for the homogeneous two-phase film. Notably, the RPS 

equation differs from the classical Rayleigh-Plesset equation through the inclusion of viscous surface 

dilatation effects (
ସ𝜅𝑠𝜌𝑙𝑅𝐵2 ሶܴ𝐵). These effects have proven to have a major role in both the physical 

sustenance of the subcavity tensile forces (measured to be as high as 1.2 MPa), and the numerical 

stability of the RPS equation. The importance for the stability of the numerical computations has been 

clearly recognized by both work of Gehannin et al. [7, 12] and Natsumeda [5] and Someya [4]. The 

RPS equation solves for the bubble radius growth ܴሺݐሻ, independent of inertia effects, thus providing 

the mechanism for void fraction, 𝛼, generation and its change with respect to time, implicitly 

contributing to the calculation of the two-phase homogeneous ߩ and ߤ used in the RE. 

2. Scope of work 

By adding the energy equation, the present work extends the work of Snyder et al. [1] regarding the 

development of pseudo-cavitation (no mass transfer by diffusion, or evaporation). In the present 

development, the collection of kernel bubbles grow both due to depressurization and temperature 

change, as the RE and RPS equations are coupled in a feedback loop with a two-dimensional energy 

equation lumped across the film thickness. Thus, the void fraction 𝛼, the liquid and bubble densities 

 vary both in the circumferential and axial ,(𝐵ߤ 𝐿andߤ) as well as their viscosities ,(𝐵ߩ 𝐿andߩ)

directions (ݖ ,ݔ) with both pressure and temperature. The two dimensional energy equation (ݖ ,ݔ) 

incorporates the effects of convection-conduction heat transfer at the fluid boundaries with the shaft 

and bushing. The calculation of the void fraction, 𝛼, as a function of (ݐ ,ݖ ,ݔ, and ܶ) at every grid point 

allows transient calculation of local homogeneous two-phase film density and viscosity in conjunction 

with the transient form of the RPS, RE and energy equations. The results account for cavitation, 

pressure, temperature and void fraction development when the fluid heat transfer coefficient, h0=hh=h, 

is varied parametrically, while eccentricity, angular velocity, and surface dilatational viscosity are kept 

constant.  

3. On the surface dilatational viscosity 

In a fluid at rest, the hydrostatic stress (−ܲ̅) is the same as the thermodynamic pressure. However, for 

a fluid in motion, the total normal stress, 𝜎𝑖𝑖, deviates from the thermodynamic pressure. One can write 

a relationship between the symmetric components of the deviatoric stress tensor and the 

thermodynamic pressure and relate to the average pressure, ܲ̅, equation 1 
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 −ܲ̅ = 𝜎̅ = 𝜎𝑖𝑖͵ = ߤ͵ʹ) + (ߣ 𝑖ݔ��𝑖ݑ�� − 𝑝 (1) 

where (
ଶ𝜇ଷ + ሻߣ =  represents the dynamic shear ߤ is defined as bulk (dilatational) viscosity. While ߢ

viscosity of the fluid, the physical meaning of ߣ is associated with viscous dissipation as it relates to 

volumetric change, Schlichting [13]. In three-dimensional fluids, generally Stokes hypothesis is 

applied, wherein the thermodynamic and mechanical pressures are taken to be equal, i.e. ߣ =  ͵/ߤʹ− 

and ߢ = Ͳ. However, unlike ߢ, its two-dimensional analog ߢs
 (surface dilatational viscosity) does not 

vanish when it is present in two-phase fluids and can greatly affect the dynamic interfacial balance of 

forces for a bubble growing through pseudo-cavitation, evaporation or gas diffusion. A stress balance 

calculated at the bubble’s wall, yields   
 Δ𝜎௙𝑙௨𝑖ௗ−௕௨௕௕𝑙௘ = ʹ𝛾ܴ𝐵 + Ͷߢ௦ܴ𝐵ଶ ሶܴ𝐵 (2) 

where, in an active expanding/contracting environment the dynamic tension at the interface exceeds 

the equilibrium tension,
ଶ𝛾𝑅𝐵, by the quantity 

ସ𝜅𝑠𝑅𝐵2 ሶܴ𝐵. The latter through its derivative ሶܴ𝐵, always exerts 

an action opposing the motion of the bubble wall resulting in an interfacial stress jump that causes the 

deviation from the static case.  

4. Bubble dynamics 

The Rayleigh [14] bubble dynamics equation describes the growth and collapse of an isolated, 

spherical bubble driven only by a varying external pressure field. The inclusion of interfacial 

rheological stresses is necessary (Scriven [15]) when the ratio of the interfacial area-to-volume is 

large, which is the case of the journal bearing or squeeze film dampers. If viscous effects within the 

gas bubble are neglected and the liquid surrounding the bubble is considered to be Newtonian and 

incompressible (κ = 0, Stokes hypothesis), the dynamic surface stress balance yields to a modified 

pressures in the liquid adjacent to the bubble wall, 𝑅ܲ, of the form (Snyder et al. [1]) 

 𝑅ܲ = 𝐵ܲ − Ͷ 𝐿ߤ ሶܴܴ − ʹ𝛾ܴ − Ͷߢ௦ ሶܴܴଶ  
(3) 

Further, replacing 𝑅ܲ in Rayleigh’s equation with its expression given by equation 3 results in a 

bubble dynamics equation which accounts for all of the interfacial properties 

 ሺܴ ሷܴ + ͵ʹ ሶܴ ଶሻ + Ͷ 𝐿ߥ ሶܴܴ + ʹ𝛾ߩ𝐿ܴ + Ͷߢ௦ ሶܴߩ𝐿ܴଶ = 𝐵ܲ − 𝐿ߩܲ∞ =⏞𝐷௔𝑙௧௢௡𝑙௔௪ ܲீ + ௩ܲ − 𝐿ߩܲ∞  (4) 

In equation 4, the bubble contents are considered to be a mixture of both vapor and non-

condensible gas(es) where by virtue of Dalton law of partial pressures one can write that 𝐵ܲ = ܲீ +௩ܲ. For the PG variation one may consider a polytropic transformation, Snyder et al. [ͳ], (ܲீ =𝑃𝐺0𝜌𝐿 ቀ𝑅0𝑅 ቁଷ௡ሻ or the Combined Gas Law (CGL)  (ܲீ = 𝑃𝐺0𝜌𝐿 ቀ𝑅0𝑅 ቁଷ 𝑇𝐺𝑇𝐺0).  In the latter case the variation of 

temperatures require that the energy equation be coupled with the RE and the RPS equations. 

5. The physical model 

The proposed pseudo-cavitation model involves the feedback coupling between the RE, RPS and the 

energy equations.  This occurs through the exchange of values of the film pressure (RE) and variable 

bulk properties ߤ = ,ݔ𝛼 ሺ]ߤ ,ݖ ܶሻ] and ߩ = ,ݔ𝛼ሺ]ߩ ,ݖ ܶሻ] of the two phase mixture, and adjustment of 

the void fraction by means of the combination of equation 4 with the Combined Gas Law and energy 

equation. The local film pressure P is computed by the RE, and by entering the pressure driving term 

into the RPS equation, these two equations are coupled. The bubble is assumed to contain a single non 
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-condensable gas kernel undergoing a transformation consistent with equation 4 and the CGL, but 

neglecting the inertia terms.  

 Ͷ 𝐿ߥ ሶܴܴ + ʹ𝛾ߩ𝐿ܴ + Ͷߢ௦ ሶܴߩ𝐿ܴଶ = ܲீ ଴ߩ𝐿 (ܴ଴ܴ)ଷ ܶܶீீ ଴ −  𝐿 (5)ߩܲ

The change in bubble radii is used to compute the local cell void fraction through the ratio of a 

spherical bubble volume to the local computational cell volume as 

 𝛼 = Ͷ/͵ܴߨଷ௖ܸ௘𝑙𝑙  (6) 

The particular shape of the bubble is not considered to be of consequence insomuch as limiting the 

validity of the bubble dynamics equation, or its usefulness for the present application. With no simple 

or practical alternative approach for non-spherical bubble dynamics, the spherical bubble symmetry is 

assumed to be maintained.  

If the bulk density and dynamic viscosity of the fluid film are considered to be continuous 

functions of a homogeneous two-phase fluid similar to the one used by Zuber and Dougherty [11], 

they may be expressed through the component properties and the void fraction as 

ߩ  = 𝛼ீߩ + ሺͳ − 𝛼ሻߩ𝐿; ߤ    = 𝛼ீߤ + ሺͳ − 𝛼ሻߤ𝐿 (7a,b) 

In equations 7a and 7b, ߩ𝐿 and ߤ𝐿 are functions of the temperature [16] yielded by the energy 

equation presented below, equation 9. In regard to the fluid film, the laminar, transient, variable 

property form of the Reynolds equation can be written as  

ݔ�𝜕�  ቆߩሺ𝛼ሻℎଷͳʹߤሺ𝛼ሻ 𝜕 𝑅ܲ𝜕ݔ ቇ + ݕ�𝜕� ቆߩሺ𝛼ሻℎଷͳʹߤሺ𝛼ሻ 𝜕 𝑅ܲ𝜕ݕ ቇ = ݔ�𝜕� ቆߩሺ𝛼ሻℎܷʹ ቇ + 𝜕ሺߩሺ𝛼ሻℎሻ𝜕ݐ  (8) 

The energy equation in its transient form, lumped across the fluid film takes the form 

 𝜕ሺ௖𝑇ሻ𝜕௧ ݑ̅+ 𝜕ሺ௖𝑇ሻ𝜕௫ ݓ̅+ 𝜕ሺ௖𝑇ሻ𝜕௬ = ଵ𝜌 𝜕𝜕௬ ቀ𝑘 𝜕𝑇𝜕௬ቁ − ଵ𝜌ு [ℎℎሺܶ − ∞ܶଵሻ + ℎ଴ሺܶ − ∞ܶଶሻ − ܳ௚௘௡] (9) 

The last three terms of the RHS of equation 9 represent the heat lost by convection to the shaft and 

bushing (where ℎ଴ = ℎℎ = ℎ), and the heat generated due to frictional dissipation, respectively. The 

field equations written in Cartesian coordinates are applied to an unwrapped bearing fluid film, figure 

1. 

6. Results and discussion of the parametric variation the heat transfer coefficients. 

All results presented herein are obtained for a journal bearing with an eccentricity of 𝜀 = Ͳ.ͺ running 

at an angular velocity of 5 krpm. Figure 2 presents a composite of 2-D line graphs at the axial center 

line for pressure, void, mixture viscosity, residual heat carried by the fluid and temperature, as the 

convective heat transfer coefficient (HTC) varies from 10 to isothermal conditions (HTC>>1000 ܹ/𝑚ଶ℃). This combined presentation is intended to facilitate the understanding of the interaction 

between these parameters. In figure 2a, the pressure decreases, as the HTC decreases from 1000 to 10 ܹ/𝑚ଶ℃. It is noteworthy that for the same trend of HTC (decrease by two orders of magnitude), the 

temperature raises by a factor of 2, figure 2d, while viscosity decreases by a factor of approximately 4 

in the region confined between 90 and 200, figure 2e. The decrease in viscosity at the same 

temperature is driven mainly by the change in the void fraction, while its decrease at the different 

HTCs different is driven by the increase in temperature as HTC goes down. A comparative look at 

figures 2b and 2e, shows the most dramatic decrease in the mixture viscosity in the regions between ͻͲ° and ʹͲͲ° even though, between the same angle confines, the void fraction is essentially zero, 

figure 2b. This indicates that ߤ𝐿 is the dominant quantity in the mixture viscosity with void playing 

almost no role. The driver of the entire development described above is ܳ௥௘௦, representing the amount 
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of residual enthalpy left in the fluid when parts of the ܳ௚௘௡ are lost due to convection to the shaft and 

bushing. Most generally, as HTC decreases, less heat is lost, resulting in highest temperatures at ℎ = ͳͲ W/mଶ℃. As the HTCs are increased by a factor of 10 and 100 respectively, the temperatures 

trend lower (by almost a factor of 2). This is justified by an increased heat loss as the increase in the 

HTC outweighs the decrease in temperatures.  

 

Figure 1. Geometry of the unwrapped bearing: (a) lateral and frontal view; (b) unwrapped film with 

Reynolds and energy equations boundary conditions.  ௘ܶ௡௩ = ௦ܶℎ௔௙௧ = ௕ܶ௨௦ℎ𝑖௡௚ = ͺͲ°C; ௘ܲ௡௩ =ͳ atm; ℎℎ = ℎ଴ = ℎ. 

 

Thus, counter-intuitively more heat is lost at lower temperatures than at the higher ones. The HTC, 

and not the temperature magnitude is responsible for this phenomenon.  Figure 3 presents the 

temperature development in the fluid over the entire surface of the fluid in the unwrapped fluid film 

when 𝜀 = Ͳ.ͺ and the angular velocity is 5 krpm. For direct comparison purposes all three figures are 

plotted at the same scale.  Figure 3a presents the temperature variation when HTC is 10W/m
2 o

C. 

Highest temperatures are observed here since this case corresponds to the lowest HTC. It appears the 

highest values occur, as expected, at the center line and continue almost unabated for the entire 

circumference (see also figure 2), though the width of this band is rather narrow. The lower 

temperatures that prevail on the outer axial regions are due to the boundary conditions which provide 

for fluid at 80°C temperature entering axially the bearing. The effects of these lower temperatures 

penetrate gradually towards the center where they meet a high temperature band. The same effect is 

visible, though less pronounced in figure 3b. The higher pressure achieved in the case of ℎ =ͳͲͲ Wm2 ℃, allows more penetration of the temperatures towards the axial ends of the bearing creating 

larger bands of higher temperatures throughout the bearing. Figure 3c presents the case for ℎ =ͳͲͲͲ W/mଶ℃. Even though this case is associated with the lowest temperature developing inside the 

bearing, the heat generation is the highest (figure 2c) due to higher viscosity (figure 2e). 

(a

(b
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Figure 4 presents the pressure development when the heat transfer coefficient is varied. The 

discussion of the centerline pressures behavior has been offered in figure 2. This figure presents the 2-

D contour plots covering the entire surface of the bearing and rendering the two dimensional 

formation both of the cavity zone and the subcavity tensile region. Figures 4a-4d present the evolution 

 

Figure 2.Study of the parametric effects of the heat transfer coefficient on the journal bearing 

behavior, 𝜀 = Ͳ.ͺ, angular velocity = ͷ krpm. a) Pressure; b) void, 𝛼; c) fluid residual heat ܳ௥௘௦; 

d) temperatures; e) mixture dynamic viscosity. 

b

c

d

a

e

Regress of the 
void zone 
when ℎ and 𝑝 go down 

𝑄𝑔𝑒𝑛 < ℎ𝛥𝑇 

Temperature 
increases as ℎ 
decreases 

Viscosity decreases 
as ℎ decreases 

𝑄𝑔𝑒𝑛 > ℎ𝛥𝑇 

Pressure decreases 
as ℎ decreases 
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of the overall pressures as the heat transfer coefficient is increased from 10 to 1000 W/mଶ℃. For 

comparison purposes the isothermal case (ℎ∞) is presented in figure 4d. 

 
Figure 3.Temperature contour plots for bearing temperature for parametric variation of the heat 

transfer coefficient when 𝜀 = Ͳ.ͺ, angular velocity=5 krpm.  

 

Figure 4. Pressure contour plots for bearing pressure and void fraction for parametric variation of 

the heat transfer coefficient when ε=0.8, angular velocity=5 krpm.  

One can see clearly the evolution of the pressure contour curves from the lowest pressures 𝑎ݐ ℎ =ͳͲ ܹ/𝑚ଶ℃, with practically no subcavity pressure present to the highest pressure for the isothermal 

case and the largest subcavity zone. The size of the subcavity is related to both surface dilatational 

viscosity [1] and the overall temperature levels. The figure also presents, in 2-D, the extent and growth 

of the cavity zone from its lowest expanse associated with the lowest pressure levels, to its highest, 

associated with the highest pressures. 

7. Conclusions 

The present study endeavors to detail the temperature effects on pressure, void, mixture viscosity  and 

subcavity development when an axial-circumferential energy equation is fully coupled with a variable 

Pa 

a b c d

°C 

a b c
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properties Reynolds, Rayleigh-Plesset-Scriven equations as well as the temperature dependent μ and ρ. 

It has been shown that the void development is largely dependent on the pressure variations while also 

being influenced by the temperature levels (figure 2b). Viscosity decreases significantly with 

temperature (figure 2c), while the latter is basically dependent on the ܳ௥௘௦ left in the fluid following 

heat losses from the film to the shaft and bushing. Counterintuitively, both the highest heat generation 

and heat losses happen for the lowest temperature, (figures 2c and 2d), resulting from the joint effects 

of temperature decrease with increasing HTC and decrease of mixture viscosity with temperature.  
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