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Abstract. The aim of this research was to prepare an acid-activated natural zeolite (Ac-Zeo) as 

a low-cost adsorbent material and to investigate their ability on methylene blue dye removal in 

aqueous solution. The natural zeolite was activated using hydrochloric acid and the final 

product was characterized using Fourier transform infra-red (FTIR), X-ray diffraction (XRD) 

and scanning electron microscopy (SEM). The adsorption process was carried out using the 

batch method. Some parameters like pH condition, contact time and varied dye initial 

concentration were studied to determine the adsorption ability of Ac-Zeo. In this study, kinetic 

adsorption was evaluated using pseudo-second order model approach and found that the kinetic 

adsorption rate constanta (k) and adsorption capacity at equilibrium are 0.1872 mg.g-1.min-1 

and 14.94 mg.g-1, respectively. Moreover, Langmuir, Freundlich, and Dubinin–Kaganer–
Radushkevich isotherm adsorption models as well as sorption mechanism were studied in this 

research. 

1. Introduction 

Zeolites are a class of microporous crystalline aluminosilicate material, widely available in Indonesia 

[1]. Zeolites have three-dimensional frameworks, consist of [SiO4]
-4

 and [AlO4]
-5

 tetrahedral [2, 3]. 

Beside of that, the zeolites also contain cations (i.e. Na
+
, Ca

+
 and K

+
) to balance the negative charge in 

its structure [2, 4]. The presence of negative charge in zeolite frameworks makes them have an 

adsorption capacity to some cationic compound like metal ion and basic dye [5-7]. In the past work, 

numerous researchers have studied about the applicability of zeolite in various purposes, i.e. catalyst 
[8], ion metal adsorption [9], gas purification [10], environmental engineering [11], and dye 

adsorption [7, 12]. However, the commercial synthetic zeolites with high purity are high cost [5]. Thus 

the using of natural zeolite is very necessary to utilize these minerals also to reduce the operating cost 
in waste water management in textile industry. 

 Synthetic dyes are commonly used in dyeing process than natural dyes due to its low-cost 

production, brighter colors, high resistance to the environment and application, thus the consumption 

of synthetic dye is higher than natural dyes even though highly toxic and carcinogenic [13]. The dye 
compound consists of chromophores groups which influence the dye color, and auxochromes group 

which determines the color intensity [14]. The rapid development of industries like textile, paper and 

pulp, leather, food, pharmaceutical and cosmetic, causes the increasing of colored effluent and 
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generates a considerable amount of polluted waste water [15, 16]. This pollution becomes a major 
concern in environmental problems, human health and marine lives [13]. 

 It was noted that the removal dye in aqueous solution is difficult to be achieved due to the inert 

properties of synthetic dye and their low concentration in aqueous solution [17]. During the past 
decade, several methods were used for dye removal in aqueous solution, including photocatalytic 

degradation [18], ion exchange [19], electrochemical [20], coagulation [21], physicochemical 

treatment [22, 23] and adsorption [7, 12, 24]. Among all of these methods, the adsorption process is 
very suitable for dye removal due to its advantages such as low operational cost to remove the organic 

dye molecules, easy and relatively effective in dye removal and can be operated at low concentration 

of dyes [13, 25, 26]. 

 Lately, a low-cost adsorbent by utilizing the natural resources, such as chitosan [27], cellulose from 
waste product [24], clay minerals [28], and natural zeolite [7, 29-31] has been developed. Due to their 

porosity, the zeolite has a good ability to be used as adsorbent material in dye removal. Han et al. [7, 

29] has been successfully utilized natural zeolite in particle form for methylene blue dye removal in 
aqueous solution. Alpat et al. [30] also used Turkish natural zeolite with the structure like-

clinoptilolite for cationic dye removal, Toluidine Blue O, and gave the best adsorption condition at pH 

11 with an adsorption maximum capacity of 2.1 x 10
-4
 mol.g

-1
. Another work has been reported that an 

enhancement of maximum adsorption capacity could be achieved by modifying the natural zeolite 
[32]. The adsorption ability of zeolite is determined by their porous structure. Elaiopoulus et al. [2] 

reported that by the dealuminated process using acid treatment (HCl) was able to reform the pore 

structure and removed the amorphous Al-species. This caused the crystallinity of zeolite increased as 
well as influenced in their porosity. Based on the literature review, in this research was tested the 

effect of acid treatment in natural zeolite on the methylene blue dye removal. Furthermore, the 

characteristic of natural zeolite after treatment was analyzed through FTIR (Fourier transform 
infrared), XRD (X-ray diffraction) and SEM (scanning electron microscopy).      

2. Experimental 

2.1. Materials 

Natural zeolite was collected from Klaten, Indonesia. Hydrochloric acid (HCl), sodium hydroxide 
(NaOH) and ammonium chloride (NH4Cl) were purchased from Merck. The methylene blue dye was 

commercially available from Surakarta, Indonesia. The distilled water was supplied from Chemistry 

Laboratory of Sebelas Maret University.   

2.2. Preparation of Acid-Activated Natural Zeolite (Ac-Zeo)  

Natural zeolite was crushed into powder form and sieved to obtain ± 200 mesh of particle size. The 

zeolite powder was refluxed with hydrochloric acid 50% at 50°C for 1 hour. Afterward, the material 
was filtered and washed with distilled water until pH 7. The sample was recorded as acid activated-

natural zeolite (Ac-Zeo). The Ac-Zeo was then immersed in 1 M ammonium chloride solution for five 

days. Then, the Ac-Zeo was washed several times using distilled water and dried at 60 °C for 24 

hours. The Ac-Zeo was stored in vacuum desiccator before used. 

2.3. Characterization of Ac-Zeo 

The Ac-Zeo was characterized using Fourier transform infra-red (FTIR) spectroscopy IR Prestige 21 

SHIMADZU. The sample was prepared in pellet form and recorded in the range of 400-4000 cm
-1

 
wave number. The scan number was set up to 45 times with resolution 2 cm

-1
. The crystallinity of Ac-

Zeo was studied using X-Ray Diffraction (XRD) model Shimadzu XRD Lab-X 6000. The morphology 

of Ac-Zeolite was observed using Scanning Electron Microscopy (SEM) model Phenom FEI. 

 
 

 

2.4. Methylene Blue Adsorption 
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2.4.1. Effect of pH. A Methylene blue solution was prepared into 30 mg.L
-1

 of concentration by 
dissolving 30 mg dye with 1 L distilled water. About 0.02 g of Ac-Zeo was added into 10 mL 

methylene blue solution with various pH (3, 5, 7, 9, and 11). Then, the mixture was shaken about 30 

minutes at room temperature. The dye solution was filtered immediately and analyzed using UV-Vis 
Perkin Elmer Lambda 25 Spectroscopy.  

2.4.2. Effect of Contact Time. Methylene blue solution was adjusted at optimum pH. About 0.02 g of 

Ac-Zeo was added into methylene blue solution (10 mL, 30 mg.L
-1

) and shaken for 10, 20, 30, 40 and 
60 minutes. After adsorption process, the dye solution was filtered immediately. The Adsorbed dye 

was calculated using UV-Vis PerkinElmer Lambda 25 spectroscopy.  

2.4.3. Effect of Initial Dye Concentration. Methylene blue solution was prepared at 10, 20, 30, 40 and 

50 mg.L
-1

 and conditioned at optimum pH condition. About 10 mL of dye solution was added into an 
erlenmeyer containing 0.02 g of Ac-Zeo and shaken for 30 minutes. The solution was filtered and 

analyzed using UV-Vis PerkinElmer Lambda 25 spectroscopy.  

3. Results and Discussion 

3.1. Material Characterization 

Quantitative analysis of natural zeolite and the activated product was conducted using XRD. The 

result showed that natural zeolite was classified as zeolite mordenite. Figure 1 describes the 

comparison of natural zeolite and Ac-zeo with the standard diffraction pattern of zeolite mordenite 
(Zeo-mordenite) from the International Zeolite Association [40]. As we can see in Figure 1, there is no 

significant effect on the pattern of natural zeolite after the acid activation. However, natural zeolite has 

broad peak at 2θ 5.4o which indicates the amorphous phase. After acid treatment, the pattern shows 
that broad peak has vanished. According to Elaiopoulus et al. [2], the acid treatment will eliminate the 

amorphous Al
3+

-species in natural zeolite structure. The eliminating of amorphous Al-species 

(dealumination) could increase the crystallinity of zeolite. Consequently, it will increase the pore in 
zeolite and it can be used as an active site for organic dye molecules binding. 

 Chemical analysis of zeolite and its modification was conducted using FTIR. This technique is very 

important to analyze the functional group of each material. Moreover, it was also used by the 

researcher for proving the chemical interaction in compounding, to analysis the material structure and 
to obtain information about the ions substitution in the material like zeolite [2, 33]. The FTIR spectra 

of the natural zeolite and acid-treated zeolite are shown in figure 2. It showed that natural zeolite 

which has classified as mordinite generally consists of Si-O tetrahedral layer and Al-OH octahedral 
layer. It was proven by the absorption band appeared at 1042 cm

-1
 which correspond to the stretching 

vibration band of Si (Al)-O [34, 35]. After acid treatment, the effect can be seen as a shift in the 

vibration position at 1042 cm
-1

 to 1086 cm
-1

. The shifting was due to dealumination process [8]. It also 
confirmed by X-ray diffractogram (figure 1). The adsorption peak at 798 cm

-1
 is characteristic 

vibration of –OH deformation in Al-OH. The vibration of Si-O-Al deformation observed as a band  at 

530 cm
-1

, while the vibration of Si-O-Si deformation is also found at 456 cm
-1

. A broad peak 

appearing at 3438 cm
-1

 is assigned to hydrogen bonding of OH in zeolite framework. Moreover, the 
peaks at 3630 cm

-1
 and 1637 cm

-1
 are typical adsorption band of the water molecules in the zeolite. As 

we know, the presence of water could poison the active sites of zeolite. Adding acid into zeolite could 

make the pore wide open and clean from impurities. It was proven after acid treatment intensity at 
3630 cm

-1
 and 1637 cm

-1
 decreased. The Infrared spectrum of Ac-Zeo has absorbance band at 3156 

cm
-1

 and 1400 cm
-1

, which characteristic of NH stretching and bending vibration which generated 

from NH4
+
 ion exchange. The presence of NH4

+
 ions could increase the acid site of zeolite. 
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Figure 1. XRD pattern of Zeolite and Ac-Zeo. 
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Figure 2. Infra-red spectrum of zeolite and Ac-Zeo. 

 
 Morphological study of Ac-Zeo surface was examined using scanning electron microscopy (SEM). 

Figure 3 showed the morphology of the Ac-Zeo with 40000 times magnification. Based on the SEM 

image, it was clearly seen that the physical structure of the Ac-Zeo like a tubular rod. 
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Figure 3. Morphology of Acid-
activated Zeolite with 40000x 

magnification 

 
 

3.2. Effect of pH 

The pH played an important role in the adsorption process [34]. However, in our study, the dye 
removal percentages at various pH condition were not significantly different, where at acid or basic 

condition, it has high dye removal percentages which are more than 90%. Figure 4 shows the dye 

removal in various pH condition with the best condition is achieved in acid condition (pH 3). In the 

pH range of 3-5, the methylene blue dye removal slightly decreases, where at pH 3 the dye removal is 
97.9% while at pH 5 reach 97.6%. The dye removal of methylene blue decreases gradually at pH 7, 

which is 15.6% compared to the condition at pH 3. At basic condition (pH 9 and 11), the dye removal 

increases compared to at pH 7, but lower than at acid condition (pH 3 and 5). The other investigation 
[7, 36], the increasing of pH led the adsorbed methylene blue onto zeolite increased because at lower 

pH the presence of H
+
 ions competed with MB in the adsorption process. However, based on this data, 

the lower of pH gave the best condition. It was noted that the presence of a porous structure of zeolite 

also played an important part in the adsorption process [31, 37]. By the acid treatment, the negative 
charge in zeolite surface was neutralized by the positive charge of H

+
. Moreover, the addition of 

ammonium chloride compound in the zeolite increased the acid site of zeolite. Thus, at acid condition, 

the MB is possible to be more basic and make it easy to attach at the acid site of zeolite. 
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Figure 4. Effect of pH condition on dye removal. 

5

JCC2016                                                                                                                                               IOP Publishing
IOP Conf. Series: Materials Science and Engineering 172 (2017) 012039    doi:10.1088/1757-899X/172/1/012039



3.3. Adsorption Kinetic 
The effect of contact time on methylene blue adsorption onto zeolite can be seen in figure 5. In the 

beginning, the dye removal reaches more than 90%, and it quickly increases after 20 minutes of 

applied contact time by 98.6%. The mechanism of methylene blue adsorption follows two phases. At 
the first stage, the methylene blue adsorption is fast due to high chemical and physical contact through 

the zeolite pores. At second phase, the adsorption is slow because the methylene blue adsorbed onto 

zeolite reached an equilibrium or the concentration of methylene blue was relatively small [7,38]. The 
adsorption of methylene blue onto zeolite has reached an equilibrium state at 40-60 minutes. By acid 

treatment, the ability of zeolite to adsorb methylene blue increased, compared to Han et al. [7] work, 

which reached equilibrium state at 820 minutes. 
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Figure 5. Effect of contact time on dye removal. 

 

 A simple kinetic adsorption can be described using a linear form of pseudo-second order using 
equation 1 [31]: 

                                                                  (1) 
where, t is the contact time (min), Qt is the adsorption capacity at t time (mg.g

-1
), k is the rate constant 

of pseudo-second order (g.mg
-1

.min
-1

) and the Qet is adsorption capacity at equilibrium (mg.g
-1

).  

 Figure 6 shows the linear form of the second-order kinetic of methylene blue dye adsorbed onto 
zeolite. From t versus t/Qt plot pseudo second order model, it can be obtained the kinetic rate constant 

(k) and the adsorption capacity at equilibrium (Qet). The k and Qet of methylene blue adsorbed onto 

Ac-Zeo are 0.1872 mg.g
-1

min
-1

 and 14.94 mg.g
-1
, respectively. The correlation coefficients (R2) 

obtained by using the linear form of pseudo-second order model is closed in 0.99995, indicating the 
models is applicable for the adsorption. A similar result has been found by Wang et al. [31] on 

methylene blue dye adsorbed onto zeolite. 
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Figure 6. Effect of contact time on dye removal. 

 

3.4. Adsorption Isotherm 
To study the adsorption isotherm, the Langmuir and Freundlich models were applied in this research. 

Moreover, the Dubinin–Kaganer–Radushkevich (DKR) model was also studied to clarify the energy 

sorption in methylene blue adsorbed onto Ac-Zeo. The linear form of Langmuir, Freundlich, and 
Dubinin–Kaganer–Radushkevich Models equation are described in equation 2 [7], 3 [31], and 4 [39]. 

 

                                                          (2) 

                                                           (3) 

                                                            (4) 

 
 Where, Co is initial dye concentration (mg.L

-1
), qe and Qm is adsorption capacity (mg.g

-1
) at 

equilibrium and maximum, respectively. Qe is the amount of methylene blue dye adsorbed in 

mmol.Kg
-1

. Qs is the DKR monolayer capacity (mmol.Kg
-1

), β is energy sorption constant (mol
2
.J

-2
), 

and ε is Polanyi potential which calculated using Equation 5. 
 

                                                               (5) 

 
Energy sorption can be calculated following equation 6. 

 

 

                                                                  (6) 

   
 Figure 7, 8 and 9 shows the linearized Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich 

adsorption isotherms of methylene blue on Ac-Zeo. The parameters of all models, such as the 
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adsorption maximum capacity, n value, energy sorption, the isotherm constants and correlation 
coefficients are presented in Table 1. The R

2
 of Freundlich model is higher than other models, which is 

0.999. It means that the adsorption process well fit to Freundlich model. Thus it followed the 

Freundlich mechanism, similar to Alpat et al. [30] works. 
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Figure 7. Langmuir isotherm model Co versus 

Ce/qe. 

 Figure 8. Freundlich isotherm model lnCo 

versus lnqe. 
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Figure 9. Dubinin–Kaganer–Radushkevich 

isotherm model ε
2
 versus lnQe. 

 

 From the Langmuir model, it can be obtained the adsorption maximum capacity by plotting Co 

versus Co/qe [7, 30, 31]. The adsorption capacity maximum is 588.24 mg.g
-1

. The Freundlich model 
was generated by the heterogeneity factor of adsorption sites (n). The 1/n value of methylene blue 

adsorbed onto Ac-Zeo is 0.98 (0<1/n<1), indicating favorability and higher adsorption ability of 

methylene blue on zeolite [7]. The DKR monolayer adsorption capacity is 137.36 mmol.Kg
-1
, while 

the energy sorption of methylene blue is 0.399 Kj.mol
-1

, indicating physical sorption [39]. 

 

Table 1. Some parameters on Isotherm adsorption. 

Isotherm Parameters Value 

Langmuir Qm (mg.g
-1

) 588.24 

 KL (L.mg
-1

) 8.57 x 10
-4
 

 R
2 

0.881 

Freundlich 1/n  0.98 
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 KF ((mg.g
-1

)(mg.L
-1
)

n
) 0.52 

 R
2 

0.999 

Dubinin–Kaganer–Radushkevich Qs (mmol.Kg
-1

)
 

137.36 

β (mol
2
.J

-2
) 3.13 X 10

-6
 

E (kJ.mol
-1

) 0.399 

R
2 

0.990 

 

4. Conclusions 
The acid treatment of zeolite has been conducted and caused an increasing of zeolite crystallinity. The 

Ac-Zeo has the porous structure and acts as an active site for methylene blue dye adsorption. The pH 

condition did not significantly influence the methylene blue dye removal. However, the best condition 
was given at acid condition (pH 3). The adsorption equilibrium was reached at range 40-60 minutes 

with dye removal was more than 90%. The rate constant of pseudo-second order (k) is 0.1872 mg.g
-

1
min

-1
. The isotherm study and adsorption mechanism followed the Freundlich model with a favorable 

mechanism. The maximum and DKR monolayer adsorption capacities are 588.24 mg.g
-1

 and 137.36 
mmol.Kg

-1
, respectively. The adsorption mechanism is physical adsorption with energy sorption of 

0.399 kJ.mol
-1

.  
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