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Abstract. The flow of cold helium in pipes is a fundamental issue of any cryogenic installation.
Pipelines for helium transportation can reach lengths of hundreds of meters. The proper
selection of size for individual pipelines and safety valves is a crucial part in the consideration
of costs for the entire installation and its safe operation. The size of the safety valve must be
properly designed in order to avoid a dangerous pressure build-up during normal operation,
as well as in the case of emergency. The most commonly occurring dangerous situation is an
undesired heat flux in the helium as a result of a broken insulation. In this case, the heat
flux can be very intense and the build-up of the pressure in the pipe can be very rapid. In
the present work, numerical calculations were used to evaluate the build-up of pressure and
temperature in the pipe, in the case of a sudden and intense heat flux. The main goal of the
applied numerical procedure was to evaluate the proper sizes of the safety valves in order to
avoid a rise in pressure above the safety limit. The proposed numerical model and calculations
were based on OpenFOAM, an open source CFD toolbox.

1. Introduction

The proper selection of safety equipment is a very important part of the design study of any
Cryogenic Distribution System (CDS). Safety valves are some of the most common safety devices
located on the pipelines. They must be properly chosen in order to counteract any undesired
increase pressure inside the pipes. The most common cause of a sudden increase in pressure
is often due to intense heat flux as a consequence of broken insulation. It is also important to
estimate the proper sizes of the individual pipes of the CDS in order to avoid overestimation
and an unnecessary increase in cost. To accomplish both of these tasks, it is necessary to predict
the dynamics of the pressure increase for each individual pipeline, and for the given heat flux.

The evaluation of the sizes of the pipelines may be based on zero dimensional analysis, but
such models are very limited and tend to result in overestimation. Moreover, this type of analysis
may be insufficient for the proper calculation of the size of the safety valves. On the other hand,
a full three-dimensional (3D) CFD analysis would be prohibitively long because each individual
pipe is hundreds of meters long, thus requiring a large number of various calculations. The
wrong estimation of the safety valves can lead to very serious consequences [1].

A 2D numerical analysis based on the proper mathematical model seems to provide the
ideal approach to this problem. 2D calculations are orders of magnitude faster than their 3D
originals. The main challenge is in the proper transformation of the 3D original geometry to its
2D numerical model, and the adequate interpretation of the results.
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In the works [2, 3], it was shown that the sufficient mathematical model, in order to calculate
the dynamics of gases in cryogenic temperatures, could at least include the compressible Navier-
Stokes equations with ideal gas and additive mixing approximations. Both works dealt with the
propagation of the cryogenic gas (argon and helium) in the tunnel. Additionally, the work [3]
compared the numerical results with the experimental data.

2. Numerical model of the pipeline
2.1. Transformation of the 3D geometry to its 2D representation.
Due to the extensive length of the pipelines of the typical cryogenic installation, and in order
to avoid prohibitively time consuming calculations, a 2 dimensional (2D) simplification was
adopted, figure 1. It was assumed that the flow was invariant in width direction, (-) /0z = 0.
Sketch a) from figure 1 shows an exemplary 3D geometry of the exemplary pipeline, composed
of two pipes with a different diameter. Sketch b) shows a 2D longitudinal cross-section in the
middle of the 3D domain. Sketch ¢) shows a numerical domain which was used in the current
2D calculations. The numerical domain from sketch c) is a 3D extrusion of the 2D cross-section
from sketch b). It is clearly visible that the geometries from sketches a) and ¢) are not identical.
In order for flow and thermal conditions in the numerical model to be as similar as possible to
the real (original) conditions, the following measures were preserved:

e The volume of the original pipeline and its numerical model are equal, Vap = Vap.

e The total heat delivered through the walls is the same for the original pipeline and the
numerical model, Q3D = QQD, where: Q3D = Q3DA3D and QQD = QQDAQD. Notice that
Asp # Asp, where Asp and Asp correspond to the area of the wall of the original pipeline
and its numerical model, respectively.

e The cross-section of the safety valves is the same for the original pipeline and its numerical
model, Ayesp = Aye2p (typically located on each end of the pipeline, not shown on the
figure).

The first condition ensures that the same amount of He is in the original pipeline and in its
numerical model. The second condition ensures that the same amount of heat is delivered to
the He.

The change of the original circular geometry to the corresponding 2D channel, changed the
value of a hydraulic diameter by ~ 10%. Nevertheless, the resulting pressure drop difference can
be considered as small and of second importance if compared to the pressure gradients developed
in the considered flow.

V3D: V2D
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a) 3D pipeline b) 2D cross-section c¢) 2D computational
domain

Figure 1. Transformation of the 3D model of the original pipeline to its numerical geometry.
Notice that the numerical geometry has 3 dimensions (length, height and width), but the
numerical model is 2D because it is width invariant, (-) /0z = 0. The heat flux is delivered
to the He through the shaded walls. Notice that the area of the walls of the 3D model of the
original pipeline is not equal to the area of the walls of the numerical model, Asp # Asp.
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2.2. Mathematical model and numerical implementation
Numerical calculations were made using the sonicFOAM solver implemented in OpenFOAM
(Open Source Field Operation and Manipulation) CFD toolbox [4]. OpenFOAM has been used
effectively in diverse and challenging applications [3,5]. In the work [5], the behaviour of a gas
mixture, subjected to very high temperatures and high frequency sound waves, was modelled and
then compared with analytical solutions. In the work [3], the emergency ejection of helium in
cryogenic temperatures into the tunnel was considered, and then additionally compared with the
experiment. Both works proved that OpenFOAM is a trustworthy and reliable CFD software.

For the present application, finite volume discretization was employed in conjunction with
the PISO (Pressure Implicit with Splitting of Operators) algorithm for compressible flows [6, 7].
Like the widely-used SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm,
PISO schemes belong to the family of pressure correction methods. However, the PISO method
requires less computational effort since the conservation of mass is satisfied within the predictor—
corrector steps.

The sonicFOAM solves for a transient, trans-sonic/supersonic, laminar or turbulent flow of
a compressible gas. This choice was dictated by the fact that, in the case of the considered
flow, high speeds are expected. The sudden opening of an safety valve, especially, can cause the
creation of a shock wave. sonicFOAM uses numerical schemes that can capture these features
while avoiding spurious oscillations.

The velocity field, u = (u,v,w) was calculated by solving the compressible Navier-Stokes
equations [8]:

0
% + V- (puu) = -Vp+ V- (uVu) (1)
which, along with the continuity equation:
dp
—_— . pr— 2
PV (pu) =0 )

constitute a closed system. The density was calculated using the ideal gas equation and the
Sutherland approximation was used to calculate the viscosity [4].
The temperature of the He was calculated using the energy transport equation:

Ope B k
at+V-(pue)—V~<CU>V6+;DV-U (3)

where k is heat conductivity and e = CvT.

3. Exemplary results and discussion

The introduced numerical model was used to calculate the increase of pressure in two typical
pipelines, as a consequence of broken insulation. The goal of the analysis was to investigate
whether the sizes of the used safety vales had been appropriately chosen.

The sizes and working parameters of the two pipelines considered below were taken from a
design study of a large cryogenics installation. Figure 2 shows the predicted heat flux for the
considered installations in the case of broken insulation, and the recalculated heat flux for the
corresponding 2D numerical geometries.

3.1. Pipeline with one change of diameter

The first considered pipeline was made up of two pipes with different diameters. The first section
had length L; = 355 m and diameter d; = 72.1 mm, while the second section had Ly = 55 m
and do = 38.4 mm. Additionally, one safety valve was located at each end of the pipeline. The
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Figure 2. The predicted heat flux for the considered installations in the case of broken insulation
(solid line), and the recalculated heat flux for the corresponding 2D numerical geometries (dashed
line — pipeline considered in §3.1, dash-dotted line — pipeline considered in §3.2).

above sizes of the original pipeline were recalculated according to the principles listed in section
2.1.

The nominal pressure of the pipeline was designed to be 4 bar a. The maximum pressure
allowed in the pipeline was 6 bar a. The safety valves were chosen to open if the pressure reached
5 bar a. The goal of the numerical analysis was to calculate the minimally required cross-section
of the safety valves.

It was assumed that at the beginning, the pipeline had uniform pressure p;c = 5 bar a, with
two open safety valves and with heat flux being delivered according to the characteristics showed
on the figure 2.

The performed numerical analysis showed that the minimal diameter of the safety valves
should be d,; = 60.3 mm and d,2 = 32.1 mm, respectively (these are recalculated values for
the original 3D geometry). The analysis took into consideration influence of the jet contraction,
which can reduce the useful diameter of the safety valve by 30%. Note that the sizes were
additionally restricted by the diameters of the individual pipes.

Figure 3 shows the pressure build-up in time for the pipeline equipped with safety valves
with minimally required diameters. The left plot shows the maximum pressure in time, |p|maz,
while the right plot shows the average pressure in time, pq, = % J4pdA. It can be seen that for
this configuration, the maximum pressure may rise close to 6 bar a, but never goes above it.
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Figure 3. The change of pressure in time for the first considered pipeline equipped with safety
valves of minimally required diameters.

Figure 4 shows the time sequence of the pressure distribution along the pipeline, p(z,y = 0),
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for times t = (0.1,1.6,2.5,5,15) s. The pressure distribution along the pipeline taken from a
different location (e.g., closer to the lower or upper wall) would be nearly the same, because the
pipeline was ”long and thin”, which causes the pressure to be nearly constant in the vertical
direction.

It can be seen that the sudden opening of the safety vales caused the shock waves to be
created at both ends of the pipeline. The waves travelled along the pipeline, collided, and then
travelled backwards. After 5 s, the waves started to flatten and after 15 s, the pressure went
below 5 bar a.

Time: 0.1s

—p bar
55 —p bar|
5.6
g 5.4
52
o
5 L
4.8 J
4'60 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Length m
Time: 1.6 s
—p bar
5.8 P
5.6
‘g 54
S5, f’\
5
4.8
4'éO 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Length m
Time: 2.5
—p bar
58 ELEH
5.6
‘g 54
fea_| | L T ]
5
4.8
4.6
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Length m
Time: 55
—p bar
55 —p bar|
5.6
g 5.4 Vﬁ/\x\/
052
5
4.8
4 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Length m
Time: 156
—p bar
Eg —p bar|
5.6
‘g 54
052
5
4'60 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
Length m

Figure 4. Change of the pressure along the pipeline, p(x,y = 0), for ¢ = (0.1,1.6,2.5,5,15)
s. The consecutive plots show the travelling shock waves caused by the sudden opening of the
safety valves located at each end of the pipeline.
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Figure 5 shows the time sequence of the x component of the velocity along the pipeline,
u(z,y = 0), for times ¢ = (0.1,1.6,2.5,5,15) s. It can be seen that the shock waves travel
against the flow. The shock wave created at the left (right) end of the pipeline, moves to the
right (left), but the flow is directed to the left (right), note the sign of u and compare with the
figure 4.
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Figure 5. Change of the x component of velocity vector along the pipeline, u(x,y = 0), for
t =(0.1,1.6,2.5,5,15). Note the negative (positive) value of the velocity indicates that the flow
is directed to the left (right). The shock wave is travelling opposite to the direction of the flow,
compare with the plots shown in figure 4

Figure 6 shows the time sequence of the instantaneous velocity profile across the pipeline, at
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x =30 m, u(x = 30,y), for t = 3.5,3.6,11.2,11.3 s. It can be seen that the maximum velocity
established inside the larger pipe of the considered pipeline is ~ 10 m/s.
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Figure 6. Change of the z component of velocity vector across the pipeline, at * = 30 m,
u(z = 30,y), for t = (3.5,3.6,11.2,11.3) s. The consecutive plots show the instantaneous
velocity profile established in the pipe. Note that the maximum velocity is ~ 10 m/s.

3.2. Pipeline with two changes of diameter
The second considered pipeline consisted of three pipes with different diameters: L; = 80 m,
Lo =255 m, Ly = 55 m and d; = 267 mm, do = 214 mm, and ds = 135 mm, respectively. In the
case of this pipeline, the diameters of the safety valves were restricted to d, = 14 mm and they
were located at each end of the pipeline. In the case of emergency, both valves were designed to
be open after the pressure reached 4 bar a.

This case differs from the previous one by way of much larger diameters for individual pipes,
hence, the increase of cold He in the system, and also in the relatively small diameter of the
safety valves, as compared to the general sizes of the pipes.

Similar to the previous case, it was assumed that at the beginning, the pipeline had uniform
pressure prc = 4 bar a, two open safety valves, and that the heat flux was delivered according
to the characteristics from figure 2.

Figure 7 shows the pressure build-up in time. It can be seen that the safety valves ensured
that the pressure never rose above 4.75 bar a. However, opposite to the previous case, the
pressure remained high for a longer time (wide plateau in the figure). After 42 s, the maximum
pressure dropped below 4.5 bar a (not show in the figure).
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Figure 7. The change of pressure in time for the second considered pipeline equipped with the
d, = 14 mm diameter safety valves.

4. Conclusions

This work has presented a generic approach for the evaluation of the sizes of the pipelines and
safety valves of a large cryogenic installation. The main virtue was found in the usage of the
2D numerical model, which was much faster when compared to the 3D model, and much more
accurate and informative when compared to the zero- or one-dimensional model.

The transformation of the original 3D geometry into simplified numerical geometry was
demonstrated, in order to solve the problem using the appropriate 2D mathematical model.

The proposed transformation kept the geometrical and flow similarities and ensured the
preservation of the characteristic numbers (especially: Reynolds number, Peclet number, and
Grashof number). For the sake of the presented analysis, a compressible Navier-Stokes model
with ideal gas law was used.

The proposed numerical approach can be seen as a tool to help with the design process of
any cryogenic installation. Its main benefits are: fast calculation time, geometrical flexibility,
with the possibility to use more complex mathematical models rather than oversimplified zero-
dimensional models. More importantly, it can reduce additional costs which result from the
overestimation of the sizes of the pipelines for cryogenic installations.
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